

Библиотека paModbus

Руководство пользователя

09.2024 версия 1.2

Содержание

Используемые термины и сокращения	3
Введение	4
1 Общие сведения	5
1.1 Основные сведения об интерфейсе RS-485	5
1.2 Основные сведения о протоколе Modbus	5
2 Функциональные блоки настройки интерфейсов	7
2.1 Функциональные блоки настройки СОМ-портов	7
2.1.1 Порт RS-485 (210-RS485)	7
2.1.2 Порт RS-232 (210-RS232)	7
2.2 Функциональные блоки настройки ТСР-соединений	8
2.2.1 TCP/IP-cepsep (TcplpSrA)	8
2.2.2 ТСР/ІР-клиент (ТсрірСІА)	
3 Библиотека раМофыs	
3 1 Modbus RTU	
3.1.1 Блок Modbus RTI I Master	
3 1 2 Блок Modbus RTLI Slave	
3.2 Modbus TCP	12
3.2 1 Блок Modbus TCP Master	12
3 2 2 Блок Modbus TCP Slave	12 13
3.3 Команлы чтения	10 14
3 3 1 Команды тения флагов 0х01 (ModbusCoilln)	14 14
3 3 2 Команда чтения фискретных входов 0x02 (ModbuseOlnn)	+۱ 14
3 3 3 Команда тения дискретных входов бход (ModbusBinputin)	14
3.3.4 Команда чтения регистров хрансния 0x00 (Modbus Alphutth)	10
3 3 5 Команда чтения вещественного числа 0x03/0x04 (ModbusFittin)	10
3 3 6 Команда чтения вещественного числа охоблохоч (Modbush Kin)	10
3.4 Команды записи	18
3.4.1 Команды записи одного флага 0x05 (ModbusCoilOut)	
3.4.2 Команда записи одного флага охоо (моазизосност)	19
3.4.3 Команда записи нескольких флагов 0x0E (ModbusCoilsOut)	20
3.4.4 Команда записи нескольких флагов охог (measuscence at)	20
3.4.5 Команда записи нескольких регистров хранений ох то (Modbus Regood)	
3 5 Буфер чтения/записи уставок с плавающей точкой (BufSupEltEx)	
3.6 Лиагностика и управление обменом	
4 Мотодика изстройки обмона по протокопу Modbus	24 26
4 1 Общая методика конфигурирования интерфейсов	
4.1 Общая методика конфигурирования интерфенсов	20 27
4.3 Настройка ПЛК в режиме Modbus RTU Slave	27 30
4.5 Пастройка ПЛК в режиме Modbus TCP Master	
4.5 Настройка ПЛК в режиме Modbus TCP Slave	
5 Salines yelden to horoway mouses	39 20
5. Гоанись целочисленных уставок по протоколу ічіоцира (DuiSupEx)	
о примеры настроики оомена по протоколу модриз	
0. Г ПЛК2 ГО (MOUDUS K ГО MASIEL) И МОДУЛИ MXTTU	43
0.2 HJINZ IU (MOUDUS KIU SIAVE) N UWEII UPU SERVER	51
0.3 ПЛК2 IU (MOUDUS TOF Master) и модули MX2 IU	
пеиложение А. коды ошиоок moabus (moabus exception Godes)	80

Используемые термины и сокращения

ПК – персональный компьютер.

ПЛК – программируемый логический контроллер.

ШИМ – широтно-импульсная модуляция.

OPC UA (Open Platform Communications, Unified Architecture) – протокол для обмена данными с ПЛК и для управления ими.

SQL (Structured Query Language) – язык программирования для хранения и обработки информации в реляционной базе данных.

Введение

Настоящее руководство описывает настройку обмена данными по протоколам **Modbus RTU** и **Modbus TCP** для контроллеров OBEH, программируемых в среде **Полигон**. Подразумевается, что читатель обладает базовыми навыками работы с **Полигон**, поэтому общие вопросы (например, создание и загрузка проектов) в данном документе не рассматриваются — они подробно описаны в документах Руководство по программированию. Библиотека раСоге и Быстрый старт.

Настройка обмена по протоколу **Modbus** в среде **Полигон** осуществляется с помощью функциональных блоков из библиотеки *paModbus*.

Примеры в документе актуальны для среды **Полигон** версии **1994** и для библиотеки **paModbus** версии **117** и выше.

1 Общие сведения

1.1 Основные сведения об интерфейсе RS-485

Интерфейс RS-485 подразумевает использование исключительно топологии типа «шина» (топологии типа «звезда» и «кольцо» не описаны в стандарте).

В сети может присутствовать только одно Master-устройство, которое отсылает запросы и принимает ответы от подчиненных Slave-устройств. Slave-устройства не могут являться инициаторами обмена.

Число Slave-устройств в сегменте сети не должно превышать **32**. Сегменты могут быть соединены повторителями (например, OBEH AC5), но следует учитывать, что так как опрос всех устройств происходит последовательно, то время одного полного цикла опроса может значительно увеличиться. Общее ограничение числа Slave-устройств в сети для протокола **Modbus – 247**.

На первом и последнем устройстве в сети рекомендуется устанавливать согласующий резистор (терминатор) с сопротивлением **120 Ом**.

Для линий связи RS-485 необходимо использовать экранированный кабель с витой парой, предназначенный для промышленного интерфейса RS-485 с волновым сопротивлением **120 Ом** (например, КИПЭВ). Экран кабеля должен быть соединен с функциональной землей **только в одной точке**.

Некоторые устройства имеют встроенные резисторы подтяжки интерфейса RS-485. Информация и рекомендации по их использованию приведены в руководстве по эксплуатации на соответствующие приборы.

1.2 Основные сведения о протоколе Modbus

Modbus – открытый коммуникационный протокол, основанный на apхитектуре Master-Slave (ведущийведомый). Спецификация протокола доступна на сайте Modbus Organization.

Master (мастер, ведущее устройство) является инициатором обмена и может считывать и записывать данные в Slave-устройства.

Slave (слэйв, подчиненное устройство) отвечает на запросы Master-устройства, но не может самостоятельно инициировать обмен.

Существуют две основные реализации протокола:

- Modbus Serial для передачи данных с использованием последовательных интерфейсов RS-232/RS-485
- Modbus TCP для передачи данных через сети TCP/IP.

Если для работы используют протокол Modbus RTU с интерфейсом RS-232/RS-485, то в сети может присутствовать только одно Master-устройство и несколько (до 247) Slave-устройств. Адрес 0 используется для широковещательной рассылки (команд записи, которую получат все Slave-устройства).

У протокола **Modbus TCP** нет явного ограничения на количество Master- и Slave-устройств. Кроме того, устройство может одновременно выполнять функции Master и Slave.

Запрос Master-устройства к Slave-устройству содержит следующие данные:

- Slave ID (адрес Slave-устройства);
- Код функции, применяемой к Slave-устройству;
- Данные адрес первого регистра и их количество (в случае записи также записываемые значения);
- Контрольная сумма.

Ответ Slave-устройства имеет схожую структуру.

Запрос Master-устройства представляет собой обращение к одной из **областей памяти** Slave-устройства с помощью определенной функции. Область памяти характеризуется типом хранящихся в ней значений (биты/ регистры) и типом доступа (только чтение/чтение и запись). Стандарт Modbus определяет четыре области памяти.

Область данных	Обозна- чение	Тип данных	Тип доступа
Coils (Регистры флагов)	0x	BOOL	Чтение/запись
Discrete Inputs (Дискретные входы)	1x	BOOL	Только чтение
Input Registers (Регистры ввода)	3x	WORD	Только чтение
Holding Registers (Регистры хранения)	4x	WORD	Чтение/запись

Таблица 1.1 – Области данных протокола Modbus

Каждая область памяти состоит из определенного (зависящего от конкретного устройства) количества ячеек. Каждая ячейка имеет уникальный адрес. Для конфигурируемых устройств (таких как TPM, ПЧВ и т. д.) производитель предоставляет **карту регистров**, в которой содержится информация об адресах и типах параметров устройства. Для программируемых устройств пользователь формирует такую карту самостоятельно с помощью среды разработки. Существуют устройства, в которых сочетаются оба рассмотренных случая – у их карты регистров есть фиксированная часть, которую пользователь может дополнить в соответствии со своей задачей (но адреса ячеек не должны пересекаться).

ПРИМЕЧАНИЕ

В некоторых устройствах области памяти наложены друг на друга (например, **0x** и **4x**) – т. е. к одним и тем же ячейкам памяти можно обращаться разными функциями.

Функция определяет операцию (чтение/запись) и область памяти, в которой эта операция будет выполняться. Ниже приведен список наиболее часто используемых функций.

Код функции	Имя функции	Команда
1 (0x01)	Read Coil Status	Чтение значений из регистров флагов
2 (0x02)	Read Discrete Inputs	Чтение значений из дискретных входов
3 (0x03)	Read Holding Registers	Чтение значений из регистров хранения
4 (0x04)	Read Input Registers	Чтение значений из регистров ввода
5 (0x05)	Write Single Coil	Запись значения в один регистр флага
6 (0x06)	Write Single Register	Запись значения в один регистр хранения
15 (0x0F)	Write Multiple Coils	Запись значений в несколько регистров флагов
16 (0x10)	Write Multiple Registers	Запись значений в несколько регистров хранения

ПРИМЕЧАНИЕ

Нельзя смешивать понятия области памяти и функции. У начинающих пользователей часто возникают проблемы при работе с **Input** и **Holding** регистрами, поскольку область памяти **Holding** регистров имеет обозначение **4x**, а функция чтения **Holding** регистров – **0x03** (может интуитивно показаться, что идентификатор области памяти и код функции должны совпадать – но на практике это не так).

Запрос к Slave-устройству может быть одиночным или групповым.

При одиночном запросе Master-устройство считывает каждый из параметров Slave-устройства отдельной командой. При групповом опросе Master-устройство считывает одной командой сразу несколько параметров, адреса которых в карте регистров расположены строго последовательно и не имеют разрывов.

Групповой опрос позволяет уменьшить трафик в сети и время, затрачиваемое на опрос устройства, но в некоторых случаях его нельзя применять (или можно, но с ограничениями) из-за индивидуальных особенностей устройства.

i

ПРИМЕЧАНИЕ

Согласно стандарту Modbus объем данных кадра ответа не может превышать **125** регистров. Поэтому групповой запрос запрашивает ограниченное количество регистров. Для 4-байтовых переменных типа float количество аргументов не должно превышать **63**.

2 Функциональные блоки настройки интерфейсов

2.1 Функциональные блоки настройки СОМ-портов

В данном разделе описаны блоки настройки СОМ-портов контроллеров ОВЕН ПЛК210 из библиотеки *раОwenIO*.

2.1.1 Порт RS-485 (210-RS485)

Блок 210-RS485 предназначен для работы с портами ПЛК210 стандарта RS-485.

Таблица 2.1 – Назначение входов и выходов 210-RS485

Элемент	Описание
	Входы (константные)
port	Порт
spd	Скорость в бодах – 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200
par	Контроль четности: 0 – нет; 1 – нечетный; 3 – четный
stb	Количество стоповых бит – 7 или 8
dtb	Количество бит данных – 1 или 2
term	Включение/выключение терминальных резисторов
	Выходы
cnc	Связь с блоком протокола
stat	Статус: 1 - соединение установлено; -1 - не удалось открыть указанный интерфейс; -2 - отсутствует соединение; -6 - ошибка настройки интерфейса
rcnt	Количество полученных байт
wcnt	Количество отправленных байт
diag	Диагностический – счетчик разности между количеством ошибок и принятыми (не может быть меньше нуля)

		b86			5		
		210-	RS485				
порт А1В1	-	port	prt	cnc	cnc	-	
скорость 9600	-	spd	Ing	int	stat	H	1 - работает, <0 - ошибка
контроль четности: 0 - нет, 1 - нечет, 3 - чет 0	-	par	uch	uns	rcnt	H	байт получено
стоповых бит 1	-	stb	uch	uns	wcnt	H	байт отправлено
бит данных 8	-	dtb	uch	ulg	diag	H	диагностика
терминальные резисторы ON_TERM	-	term	trm				

Рисунок 2.1 – Порт RS-485 (210-RS485)

2.1.2 Порт RS-232 (210-RS232)

Блок 210-RS232 предназначен для работы с портом ПЛК210 стандарта RS-232.

Таблица 2.2 – Назначение входов и выходов 210-RS232

Элемент	Описание
	Входы (константные)
spd	Скорость в бодах – 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200

Продолжение таблицы 2.2

Элемент	Описание
par	Контроль четности:
	0-нет;
	1 – нечетный;
	3 – четный
stb	Количество стоповых бит – 7 или 8
dtb	Количество бит данных – 1 или 2
	Выходы
cnc	Связь с блоком протокола
stat	Статус:
	1 - соединение установлено;
	-1 - не удалось открыть указанный интерфейс;
	-2 - отсутствует соединение
rcnt	Количество полученных байт
wcnt	Количество отправленных байт
diag	Диагностический – счетчик разности между количеством ошибок и принятыми (не может быть меньше нуля)

Рисунок 2.2 – Порт RS-232 (210-RS232)

2.2 Функциональные блоки настройки ТСР-соединений

В данном разделе описаны блоки настройки TCP-соединений ПЛК210 из библиотеки *paCore*.

2.2.1 TCP/IP-сервер (TcpIpSrA)

Блок *TcplpSrA* представляет собой TCP/IP-сервер для обеспечения работы протоколов (например, Modbus TCP Slave). Сервер поддерживает одновременно не более **20** подключений.

таолица 2.5 – пазначение входов и выходов тсріръ	rA
--	----

Элемент	Описание
	Входы (константные)
prt	Локальный порт
lip	Локальный IP адрес
sdr	Сетевой стек, для ПЛК ОВЕН "/"
wait	Время до закрытия пустого канала, мс. При установке 0 – никогда
	Выходы
cnc	Связь с блоком протокола
stat	Статус: 0 – есть подключения; >0 – нет подключений

	_	b496			65	
		Tcplp	SrA			
порт 5005	-	prt	i16	cnc	cnc	 связьсблоком
локальный ір "172.16.64.ххх"	-1	lip	ul32	i16	stat	 статус работы
сетевой стек "/"		sdr	str			
мс до закрытия пустого канала, 0 - никогда 0	- 1	wait	132			

Рисунок 2.3 – TCP/IP-сервер (TcplpSrA)

При настройке блока *TcplpSrA* удобно использовать технологию SQL-запросов. Это позволяет изменять IPадрес и порт в одном месте и использовать эти значения в разных частях проекта.

Запрос IP-адреса (prop_ip):

"<sql>SELECT value FROM blocks_prop WHERE indx=:module AND type="prop_ip"</sql>"

Запрос пользовательского свойства *Пользовательское свойство 00* (prop_0): <sql> SELECT value FROM blocks_prop WHERE indx=:module AND type="prop_0"</sql>

2.2.2 TCP/IP-клиент (TcpIpCIA)

Блок *TcplpClA* представляет собой TCP/IP-клиент для обеспечения работы протоколов (например, Modbus TCP Master).

Так как работа блока занимает значительное время, может быть размещен только в Фоне.

Таблица 2.4 – Назначение входов и выходов TcplpCIA

Элемент	Описание				
	Входы (константные)				
lprt	Локальный порт				
lip	Локальный IP адрес				
sdr	Сетевой стек, для ПЛК ОВЕН "/"				
rprt	Удаленный порт				
ip	IP адрес удаленного сервера				
	Выходы				
cnc	Связь с блоком протокола				
stat	Статус: 0 – есть связь с TCP/IP-сервером; >0 – нет связи				

		b510		90		
		TcplpCIA				
локальный порт 5005	-	lprt i16	cnc	cnc	_	связь с блоком
локальный ір "172.16.64.ххх"	-	lip ul32	i16	stat	-	статус работы
сетевой стек "/"	-	sdr str				
удаленный порт 5005	-	rprt i16				
ір удаленного сервера "172.16.64.230"	-	ip ul32				

Рисунок 2.4 – ТСР/ІР-клиент (ТсрірСІА)

При настройке блока *TcplpCIA* удобно использовать технологию SQL-запросов. Это позволяет изменять IPадреса и порты в одном месте, и использовать эти значения в разных частях проекта.

Запрос IP-адреса (prop_ip):

"<sql>SELECT value FROM blocks_prop WHERE indx=:module AND type="prop_ip"</sql>"

Запрос пользовательского свойства **Пользовательское свойство 00** (prop_0):

<sql> SELECT value FROM blocks_prop WHERE indx=:module AND type="prop_0"</sql>

3 Библиотека paModbus

Библиотека *paModbus* содержит функциональные блоки для обмена по протоколам Modbus – блоки **Modbus Master** и **Modbus Slave**, а также блоки команд чтения и записи.

Для добавления библиотеки *paModbus* в проект следует:

1. Перейти в меню **Окна/Проекты**. В появившемся окне отобразится текущий проект и добавленные библиотеки.

Проекты
Проекты
Сообщение об ошибке Отправить
История изменений
2023-10-06 16:35:52.551 261 Is@307-LS [OK] Изменение свойств OpcUAServ 2023-10-03 15:24:33.243 260 Is@307-LS [OK] Изменение свойств OpcUAServ 2023-10-03 15:24:19 948 259 Is@307-LS [OK] Изменение свойств OpcI IAServ ↓
Показывать 10 записей Обновить
Поиск Добавить новую запись Редактировать Удалить
Список доступных библиотек:
Добавить Удалить

Рисунок 3.1 – Добавление библиотеки paModbus в проект

2. Нажать кнопку **Открыть** и перейти в папку с файлами библиотеки, которую необходимо добавить. Затем в выпадающем списке выбрать тип файла **Библиотека Полигон 2 (*.II2)**

Полигон 2(*.pl2)	\sim		
Полигон 2(*.pl2)			
Полигон 2 с защитой(*.pp2)			
Полигон 2 многопользовате	пьск	ий(*.pg2)
Библиотека Полигон 2(*.II2)			

Рисунок 3.2 – Добавление библиотеки paModbus в проект

3. В окне появится файл библиотеки с расширением .II2. Необходимо выбрать его и нажать Открыть.

🐔 Открыть			×
← → ∽ ↑ 🔤 « Polygon2 :	> paLibsDemo > paModbus >	ب گ ا	иск в: paModbus
Упорядочить 🔻 Новая папка			E: 🕶 🔟 ?
🔮 Documents	^ Имя	Дата изменения	Тип Разм
🚆 Видео	- build	02.10.2023 20:57	Папка с файлами
🖊 Загрузки	img	02.10.2023 20:57	Папка с файлами
🔄 Изображения	include	02.10.2023 20:57	Папка с файлами
🍌 Музыка	paModbus.II2	19.01.2022 11:41	Файл "LL2"
🏮 Объемные объекты			
💻 Рабочий стол	•		
🏪 Локальный диск (С:)			
— Новый том (F·)	v <		>
<u>И</u> мя файла:	paModbus.II2	~ Библиот	ека Полигон 2(*.II2) 🗸 🗸
			лть Отмена .::

Рисунок 3.3 – Добавление библиотеки paModbus в проект

Добавленная библиотека отобразится в окне Проекты.

3.1 Modbus RTU

3.1.1 Блок Modbus RTU Master

Блок Modbus RTU Master обеспечивает работу Master-устройства по протоколу Modbus RTU.

Так как работа блока занимает значительное время, его можно разместить только в Фоне.

Таблица 3.1 – Назначение входов и выходов Modbus RTU Master

Элемент	Описание
	Входы
cnc	Связь с блоком СОМ-порта (210-RS485, 210-RS232)
enbl	Разрешение работы
tmp	Время (в мс) между получением ответа от Slave-устройства и началом опроса следующего (константный)
wait	Время (в мс), в течение которого Master ожидает ответа Slave устройства (константный)
bo	Входы для связи с блоками записи (циклический)
	Выходы
itr	Связь с блоками чтения
sts	Статус работы: 0 – есть связь; >0 – нет связи или Slave не отвечает (в младшем байте: 1 –Slave не отвечает, 2 –неверная контрольная сумма)

Команды, подключенные к блоку Master, опрашиваются последовательно с периодичностью **tmp**. Выключенные команды (вход **enb** блока команды, равный **0**) пропускаются.

ВНИМАНИЕ Для правильной инициализации необходимо разместить в программе блок Master после блоков записи (см. свойства блоков *Порядок*).

Чтение осуществляется циклически, запись – по изменению.

Рисунок 3.4 – Блок Modbus RTU Master

3.1.2 Блок Modbus RTU Slave

Блок Modbus RTU Slave обеспечивает работу Slave-устройства по протоколу Modbus RTU.

Так как работа блока занимает значительное время, его можно разместить только в Фоне.

Таблица 3.2 – Назначение входов и выходов Modbus RTU Slave

Элемент	Описание	
	Входы	
cnc	Связь с блоком СОМ-порта (210-RS485, 210-RS232)	
enbl	Разрешение работы	
tmp	Периодичность обработки запросов, мс (константный)	
wait	Время ожидания запроса от Master, мс (константный)	
bo	Входы для связи с блоками записи (циклический)	
Выходы		
itr	Связь с блоками чтения	
sts	Не используется	

Slave обрабатывает команды, полученные от Master, с периодичностью **tmp**. Если при обработке команды не обнаружен соответствующий блок команды, то Slave посылает мастеру соответствующую ошибку:

- 0x80 | команда нет блока с соответствующим кодом команды, код команды в блоке не определен запрашиваемый адрес (например, при опросе Holding Register команда 0x03, тогда ошибка: 0x80 | 0x03 = 0x83);
- 0x23 неверная контрольная сумма.

Рисунок 3.5 – Блок Modbus RTU Slave

3.2 Modbus TCP

3.2.1 Блок Modbus TCP Master

Блок Modbus TCP Master обеспечивает работу Master-устройства по протоколу Modbus TCP.

Так как работа блока занимает значительное время, его можно разместить только в Фоне.

Таблица 3.3 – Назначение входов и выходов Modbus TCP Master

Элемент	Описание		
Входы			
cnc	Связь с блоком ТсрІрСІА		
enbl	Разрешение работы		
tmp	Время (в мс) между получением ответа от Slave-устройства и началом опроса следующего (константный)		

Продолжение таблицы 3.3

Элемент	Описание		
wait	Время (в мс), в течение которого Master ожидает ответа Slave устройства (константный)		
bo	Входы для связи с блоками записи (циклический)		
Выходы			
itr	Связь с блоками чтения		
sts	Статус работы: 0 – есть связь с сервером TCP/IP >0 – нет связи или Slave не отвечает		

Команды, подключенные к блоку Master, опрашиваются последовательно с периодичностью **tmp**. Выключенные команды (вход **enb** блока команды, равный **0**) пропускаются.

Чтение осуществляется циклически, запись – по изменению.

Рисунок 3.6 – Блок Modbus TCP Master

3.2.2 Блок Modbus TCP Slave

Блок Modbus TCP Slave обеспечивает работу Slave-устройства по протоколу Modbus TCP.

Так как работа блока занимает значительное время, его можно разместить только в Фоне.

Таблица 3.4 – Назначение входов и выходов Modbus TCP Slave

Элемент	Описание		
	Входы (константные)		
cnc	Связь с блоком TcplpSrA		
enbl	Разрешение работы		
tmp	Периодичность обработки запросов, мс (константный)		
wait	Время ожидания запроса от Master, мс (константный)		
bo	Входы для связи с блоками записи (циклический)		
	Выходы		
itr	Связь с блоками чтения		
sts	Статус работы: 0 – есть связь с Master; >0 – нет связи или нет запросов от Master		

Slave обрабатывает команды, полученные от Master, с периодичностью **tmp**. Если при обработке команды не обнаружен соответствующий блок команды, то Slave посылает мастеру одну из ошибок:

- 1 нет блока с соответствующим кодом команды;
- 2 в блоке не определен запрашиваемый адрес.

Рисунок 3.7 – Блок Modbus TCP Slave

3.3 Команды чтения

В данном разделе приведено описание блоков библиотеки *paModbus*, которые реализуют команды протокола **Modbus** на чтение параметров.

Таблица 3.5 – paModbus. Команды чтения

Код	Имя функции	Команда	Блоки paModbus	
функции			Подключение к Modbus Master	Подключение к Modbus Slave
1 (0x01)	Read Coil Status	Чтение значений из регистров флагов	ModbusCoilIn	ModbusCoilOut ModbusCoilsOut
2 (0x02)	Read Discrete Inputs	Чтение значений из дискретных входов	ModbusDInputIn	-
3 (0x03)	Read Holding Registers	Чтение значений из регистров хранения	ModbusRegIn ModbusFltIn OwenFltIn	ModbusRegOut ModbusRegsOut ModbusFltOut
4 (0x04)	Read Input Registers	Чтение значений из регистров ввода	ModbusAInputIn ModbusFItIn OwenFItIn	-

3.3.1 Команда чтения флагов 0x01 (ModbusCoilln)

Блок ModbusCoilln отправляет команду Modbus для чтения значений из регистров флагов (Coil).

При подключении к блоку Master блок ModbusCoilln выполняет команду 0x01, при подключении к Slave – 0x05.

Таблица 3.6 – Назначение в	ходов и выходов ModbusCoilln
----------------------------	------------------------------

Элемент	Описание	
	Входы	
itr	Связь с блоком <i>Modbus Master/Modbus Slave</i>	
enb	Разрешение работы (при подключении к <i>Modbus Master</i>)	
slv	Адрес ведомого устройства, с которого считывают данные	
adr0	Адрес, с которого начинается чтение	
Выходы		
bi	Указатель на блок, не используется	
st	Статус работы (при подключении к <i>Modbus Master</i>): 0 – нет связи; 1 – есть связь, ошибок нет; >1 – есть связь, код ошибки в старшем байте	
0	Результаты чтения (циклический)	

Для инициализации следует подключить вход itr к выходу блока Master или Slave и задать верный адрес устройства.

Рисунок 3.8 – Блок ModbusCoilIn

3.3.2 Команда чтения дискретных входов 0x02 (ModbusDInputIn)

Блок ModbusDinputin отправляет команды Modbus на чтение дискретных входов (Inputs).

При подключении к блоку Master блок ModbusDinputin выполняет команду 0x02.

Элемент	Описание				
	Входы				
itr	Связь с блоком <i>Modbus Master</i>				
enb	Разрешение работы				
slv	Адрес ведомого устройства, с которого считывают данные				
adr0	Адрес, с которого начинается чтение				
	Выходы				
bi	Указатель на блок, не используется				
st	Статус работы: 0 – нет связи; 1 – есть связь, ошибок нет; >1 – есть связь, код ошибки в старшем байте				
0	Результаты чтения (циклический)				

Таблица 3.7 – Назначение входов и выходов ModbusDinputin

Для инициализации следует подключить вход itr к выходу блока Master и задать верный адрес устройства.

		b118			40
		Modb	usDir	nputin	
???	-	itr	itr	bfi	bi
1	-	enb	uch	int	st
Адрес устройства 0	-	slv	uch	b	00
0	+	adr0	uns		

Рисунок 3.9 – Блок ModbusDInputIn

3.3.3 Команда чтения регистров хранения 0x03 (ModbusRegIn)

Блок ModbusRegIn отправляет команды Modbus на чтение регистров хранения (Holding Registers).

При подключении к блоку Master блок ModbusRegIn выполняет команду 0x03, при подключении к Slave – 0x06, 0x10.

Таблица 3.8 – Назначение входов и выходов ModbusRegIn

Элемент	Описание				
	Входы (константные)				
itr	Связь с блоком <i>Modbus Master/Modbus Slave</i>				
enb	Разрешение работы (при подключении к <i>Modbus Master</i>)				
slv	Адрес ведомого устройства, с которого считывают данные				
adr0	Адрес, с которого начинается чтение				
	Выходы				
bi	Указатель на блок, не используется				
st	Статус работы (при подключении к <i>Modbus Master</i>): 0 – нет связи; 1 – есть связь, ошибок нет; >1 – есть связь, код ошибки в старшем байте				
0	Результаты чтения (циклический)				

Для инициализации следует подключить вход **itr** к выходу блока Master или Slave и задать верный адрес устройства.

Рисунок 3.10 – Блок ModbusRegIn

3.3.4 Команда чтения входных регистров 0x04 (ModbusAInputIn)

Блок *ModbusAlnputin* отправляет команды Modbus на чтение регистров ввода (Input Registers).

При подключении к блоку Master блок ModbusAlnputIn выполняет команду 0x04.

Таблица 3.9 – Назначение входов и выходов ModbusAInputIn

Элемент	Описание				
	Входы				
itr	Связь с блоком <i>Modbus Master</i>				
enb	Разрешение работы				
slv	Адрес ведомого устройства, с которого считывают данные				
adr0	Адрес, с которого начинается чтение				
	Выходы				
bi	Указатель на блок, не используется				
st	Статус работы: 0 – нет связи; 1 – есть связь, ошибок нет; >1 – есть связь, код ошибки в старшем байте				
0	Результаты чтения (циклический)				

Для инициализации следует подключить вход itr к выходу блока Master и задать верный адрес устройства.

Рисунок 3.11 – Блок ModbusAInputIn

3.3.5 Команда чтения вещественного числа 0x03/0x04 (ModbusFltIn)

Блок *ModbusFltIn* отправляет команды Modbus на чтение вещественных чисел из регистров хранения (Holding Registers) или регистров ввода (Input Registers). Каждое число занимает два регистра.

При подключении к блоку Master блок ModbusFitin выполняет команды 0x04 или 0x03, при подключении к блоку Slave – 0x10 (для регистров хранения).

блица 3.10 – Назначение входов и выходов ModbusFitin
--

Элемент	Описание			
	Входы			
itr	Связь с блоком Modbus Master/Modbus Slave			
enb	Разрешение работы (при подключении к <i>Modbus Master</i>)			
slv	Адрес ведомого устройства, с которого считывают данные			
adr0	Адрес, с которого начинается чтение			
hold/in	Выбор регистров для чтения – регистры хранения/регистры ввода (0/1)			
ord_w	Порядок слов в числе – прямой/обратный (0/1)			
ord_b	Порядок байт в числе – прямой/обратный (0/1)			
	Выходы			
bi	Указатель на блок, не используется			
st	Статус работы (при подключении к <i>Modbus Master</i>): 0 – нет связи;			
	1 – есть связь, ошибок нет;			
	>1 – есть связь, код ошибки в старшем байте			
0	Результаты чтения (циклический)			

Таблица 3.11 – Порядок слов и байт

ord_w	ord_b	Порядок байт
0	0	AB CD
0	1	BA DC
1	0	CD AB
1	1	DC BA

Для инициализации следует подключить вход itr к выходу блока Master или Slave и задать верный адрес устройства.

Рисунок 3.12 – Блок ModbusFltIn

3.3.6 Команда чтения результатов измерения аналогового входа (OwenFltIn)

Блок *OwenFltIn* отправляет команды Modbus на чтение вещественных чисел из регистров хранения (Holding Registers) или регистров ввода (Input Registers) модулей аналогового ввода OBEH MB210-101.

При подключении к блоку Master блок OwenFitIn выполняет команды 0x04 или 0x03.

Таблица 3.12 – Назначение входов и выходов OwenFltIn

Элемент	Описание				
	Входы				
itr	Связь с блоком <i>Modbus Master</i>				
enb	Разрешение работы				
slv	Адрес ведомого устройства, с которого считывают данные				
adr0	Адрес, с которого начинается чтение				
hold/in	Выбор регистров для чтения – регистры хранения/регистры ввода (0/1)				
	Выходы				
bi	Указатель на блок, не используется				
st	Статус работы: 0 – нет связи; 1 – есть связь, ошибок нет;				
	>1 – есть связь, ошиока				
	Циклические выходы				
rslt	Отображает результаты измерения				
time	Время измерения				
stsi	Код ошибки (см. таблицу 3.13)				
vldi	Бит достоверности: 1 – данные достоверны; 0 – данные не достоверны				
msk	Маска кода ошибки (см. таблицу 3.13)				

Код ошибки	Маска	Описание
0xF0	1	Значение заведомо неверно
0xF6	2	Данные не готовы. Необходимо дождаться результатов первого измерения после включения модуля
0xF7	4	Датчик отключен
0xF8	8	Велика температура свободных концов ТП
0xF9	16	Мала температура свободных концов ТП
0xFA	32	Измеренное значение слишком велико
0xFB	64	Измеренное значение слишком мало
0xFC	128	Короткое замыкание датчика
0xFD	256	Обрыв датчика
0xFE	512	Отсутствие связи с АЦП
0xFF	1024	Некорректный калибровочный коэффициент

Таблица 3.13 – Коды ошибок

Для инициализации следует подключить вход itr к выходу блока Master и задать верный адрес устройства.

		b123			55	
		OwenFl	tln			
???	-	itr	itr	bfi	bi	
1	-	enb	uch	int	st	-
Адрес устройства 1	-	slv	uch	flt	rsit0	-
4000	-	adr0	uns	uns	time0	-
0	-	hold/in	b	uch	stsi0	-
				b	vldi0	-
				u16	msk0	-

Рисунок 3.13 – Блок OwenFltIn

3.4 Команды записи

В данном разделе приведено описание блоков библиотеки *paModbus*, которые реализуют команды протокола **Modbus** на запись параметров.

Код функции	Имя функции	Команда	Блоки paModbus		
			Подключение к Modbus Master	Подключение к Modbus Slave	
5 (0x05)	Write Single Coil	Запись значения в один регистр флага	ModbusCoilOut	ModbusCoilIn	
6 (0x06)	Write Single Register	Запись значения в один регистр хранения	ModbusRegOut	ModbusRegIn	
15 (0x0F)	Write Multiple Coils	Запись значений в несколько регистров флагов	ModbusCoilsOut	-	
16 (0x10)	Write Multiple Registers	Запись значений в несколько регистров хранения	ModbusRegsOut ModbusFltOut	ModbusRegIn, ModbusFltIn	

Таблица 3.14 – paModbus. Команды записи

3.4.1 Команда записи одного флага 0x05 (ModbusCoilOut)

Блок ModbusCoilOut отправляет команды Modbus на запись в регистр флага (Coil) дискретного вывода.

При подключении к блоку Master блок ModbusCoilOut выполняет команду 0x05, при подключении к Slave – 0x01.

Для записи 1 в флаг на вход следует подать любое положительное число. Для записи 0 – подать 0.

Элемент	Описание				
	Входы				
enb	Разрешение работы (при подключении к <i>Modbus Master</i>)				
slv	Адрес ведомого устройства, на который записывают данные				
adr0	Адрес, с которого начинается запись				
in	Входы записи данных (циклический)				
	Выходы				
bo	Связь с блоком <i>Modbus Master/Modbus Slave</i>				
st	Статус работы (при подключении к <i>Modbus Master</i>): 0 – нет связи; 1 – есть связь, ошибок нет; >1 – есть связь, код ощибки в старшем байте				

Таблица 3.15 – Назначение входов и выходов ModbusCoilOut

Для инициализации следует подключить выход **bo** к входу блока Master или Slave и задать верный адрес устройства.

b124			35		
	Mod	busCoi	ilOut		
1	- enb	uch	bfo	bo	-
Адрес устройства 0	- slv	uch	int	st	-
0	- adr0	uns			
0	- in0	uch			

Рисунок 3.14 – Блок ModbusCoilOut

3.4.2 Команда записи одного регистра хранения 0x06 (ModbusRegOut)

Блок *ModbusRegOut* отправляет команды Modbus на запись регистра хранения (Holding Register).

При подключении к блоку Master блок ModbusRegOut выполняет команду 0x06, при подключении к Slave – 0x03.

Таблица 3.16 – Назначение входов и выходов ModbusRegOu	ut
--	----

Элемент	Описание
	Входы
enb	Разрешение работы (при подключении к <i>Modbus Master</i>)
slv	Адрес ведомого устройства, на который записывают данные
adr0	Адрес, с которого начинается запись
in	Входы записи данных (циклический)
	Выходы
bo	Связь с блоком Modbus Master/Modbus Slave
st	Статус работы (при подключении к <i>Modbus Master</i>): 0 – нет связи; 1 – есть связь, ошибок нет; >1 – есть связь, код ошибки в старшем байте

Для инициализации следует подключить выход **bo** к входу блока Master или Slave и задать верный адрес устройства.

		b125			40
		Mod	busRe	gOut	
1	-	enb	uch	bfo	bo
Адрес устройства 0	-	slv	uch	int	st
0	-	adr0	uns		
0	-	in0	uns		

Рисунок 3.15 – Блок ModbusRegOut

3.4.3 Команда записи нескольких флагов 0x0F (ModbusCoilsOut)

Блок *ModbusCoilsOut* отправляет команды Modbus на запись нескольких флагов (Coils).

При подключении к блоку Master блок ModbusCoilsOut выполняет команду 0x0F, при подключении к Slave – 0x01.

Таблица 3.17 -	Назначение	входов и	і выходов	ModbusC	oilsOut

Элемент	Описание
	Входы
enb	Разрешение работы (при подключении к <i>Modbus Master</i>)
slv	Адрес ведомого устройства, на который записывают данные
adr0	Адрес, с которого начинается запись
in	Входы записи данных (циклический)
	Выходы
bo	Связь с блоком <i>Modbus Master/Modbus Slave</i>
st	Статус работы (при подключении к <i>Modbus Master</i>):
	0 – нет связи;
	1 – есть связь, ошибок нет;
	>1 – есть связь, код ошибки в старшем байте

Для инициализации следует подключить выход **bo** к входу блока Master или Slave и задать верный адрес устройства.

		b128			45	
		Mode	ousCoi	lsOut		
1	-	enb	uch	bfo	bo	-
Адрес устройства 0	-	slv	uch	int	st	H
0	-	adr0	uns			
0	-	in0	reg			

Рисунок 3.16 – Блок ModbusCoilsOut

3.4.4 Команда записи нескольких регистров хранения 0x10 (ModbusRegsOut)

Блок *ModbusRegsOut* отправляет команды Modbus на запись нескольких регистров хранения (Holding Registers).

При подключении к блоку Master блок ModbusRegsOut выполняет команду 0x10, при подключении к Slave – 0x03.

Таблица 3.18 -	Назначение	входов и	выходов	ModbusReasOut

Элемент	Описание
	Входы
enb	Разрешение работы (при подключении к <i>Modbus Master</i>)
slv	Адрес ведомого устройства, на который записывают данные
adr0	Адрес, с которого начинается запись
in	Входы записи данных (циклический)
	Выходы
bo	Связь с блоком <i>Modbus Master/Modbus Slave</i>
st	Статус работы (при подключении к <i>Modbus Master</i>): 0 – нет связи; 1 – есть связь, ошибок нет; >1 – есть связь, код ошибки в старшем байте

Для инициализации следует подключить выход **bo** к входу блока **Master** или **Slave** и задать верный адрес устройства.

Рисунок 3.17 – Блок ModbusRegsOut

3.4.5 Команда записи вещественного числа 0x10 (ModbusFltOut)

Блок *ModbusFltOut* отправляет команды Modbus на запись вещественных чисел в регистры хранения (Holding Registers). Каждое число занимает два регистра.

При подключении к блоку Master блок ModbusFltOut выполняет команду 0x10, при подключении к блоку Slave – 0x03.

Таблица 3.19 -	Назначение входов	и выходов	ModbusFltOut

Элемент	Описание
	Входы
enb	Разрешение работы (при подключении к <i>Modbus Master</i>)
slv	Адрес ведомого устройства, на который записывают данные
adr0	Адрес, с которого начинается запись
ord_w	Порядок слов в числе – прямой/обратный (0/1)
ord_b	Порядок байт в числе – прямой/обратный (0/1)
in	Входы записи данных (циклический)
	Выходы
bo	Связь с блоком <i>Modbus Master/Modbus Slave</i>
st	Статус работы (при подключении к <i>Modbus Master</i>):
	0 – нет связи;
	1 – есть связь, ошибок нет;
	>1 – есть связь, код ошибки в старшем байте

Таблица 3.20 – Порядок слов и байт

ord_w	ord_b	Порядок байт
0	0	AB CD
0	1	BA DC
1	0	CD AB
1	1	DC BA

Для инициализации следует подключить выход **bo** к входу блока Master или Slave и задать верный адрес устройства.

		b130			55	
		Modb	ModbusFltOut			
1	1 -	enb	uch	bfo	bo	
Адрес устройства () -	slv	uch	int	st	
() -	adr0	uns			
Порядок слов: 0-прямой, 1- обратный 1	1 -	ord_w	b			
Порядок байт: 0-прямой, 1- обратный () -	ord_b	b			
() -	in0	flt			

Рисунок 3.18 – Блок ModbusFltOut

3.5 Буфер чтения/записи уставок с плавающей точкой (BufSupFltEx)

Блок **BufSupFitEx** представляет собой двунаправленный буфер данных интерфейса. Блок сохраняет данные в бинарном файле на диске контроллера (так же, как блок **SaverEx** из библиотеки **paCore**).

Отличие блока **BufSupFitEx** от блока **BufSupEx** из библиотеки **paCore** заключается в том, что он позволяет записывать по протоколу Modbus уставки в формате с плавающей точкой. Пример работы с блоком приведен в разделе 5.2.

Поскольку операции файлового ввода/вывода занимают значительное время, данный блок следует размещать только в *Фоне*.

Таблица 3.21 -	Назначение входов и выхо	одов BufSupFltEx
----------------	--------------------------	------------------

Элемент	Описание
	Входы
inter	Связь от интерфейса, к которому принадлежит данный буфер
group	Номер группы (константный)
fnm	Абсолютный путь и имя файла (может быть пустым – задается автоматически), расширение игнорируется. При сохранении данных на внешнем накопителе следует использовать путь, указанный на выходе блока 210-SD-USB из библиотеки раOwenIO (константный)
mask	Не используется
rst	Сброс ошибок записи
wr	Запись на диск
	Циклические входы
dan	Значение, которое записывается в буфер при ссар = 1
czap	Запись значения dan
typ	Тип параметра: АІ, АО – вещественное значение (константный)
adr	Адрес параметра (константный)
ini	Значение для инициализации (константный)
min	Минимум, если принятое значение меньше min, то оно игнорируется
max	Максимум, если принятое значение больше тах , то оно игнорируется
	Выходы
pkt	Подключение к блокам OpcUAClient , UABufSups из библиотеки paOpcUA
next	Имя следующего файла
enb	Запись разрешена
sts	Статус: 0 – после сброса; 1 – записан; 2 – прочитан; <0 – ошибка
good	Количество удачных записей
bad	Количество ошибок записи
rej	Количество отклоненных записей
	Циклические выходы
dan	Значение параметра, полученное по интерфейсу или на вход dan (после проверки на min и max)
chn	Признак изменения, выставляется в 1 на один цикл выполнения программы, если значение dan изменилось
zap	Признак записи, выставляется в 1 на один цикл выполнения программы, если значение с входа dan было записано

Номер группы group используется в качестве Slave ID при подключении к блоку интерфейса Modbus Slave.

Имя файла и путь к нему задается на входе **fnm**. Имя может быть пустым, тогда имя файла будет выбрано автоматически по индексу блока и файл сохраняется в рабочую директорию контроллера.

Адрес переменной **adr** зависит от интерфейса, к которому подключен буфер, например, адрес регистра Modbus.

Если файл существует на диске, выходы инициализируются сохраненными значениями. Если файла не существует – выходы инициализируются значениями инициализации **ini**.

Запись в файл производится при изменении значений на входах **dan** или по интерфейсу. Если файла на диске не существует и выходы **dan** приняли значения **ini**, то можно записать их на диск принудительно с помощью команды **wr**.

Для сохранности данных одновременно на диске находятся два файла, соответствующие одному архиву. Если контроллер будет перезагружен в момент записи на диск, данные не пропадут, а будут доступны предыдущие значения переменных, записанные в другом файле. При чтении содержимое файла контролируется с помощью контрольной суммы, и только при ее корректности выдается на выходы (поэтому, например, при добавлении новой переменной, значения, записанные в файл, сбросятся на значения **ini**).

Если при записи файла на диск происходит однократная ошибка, блок пытается переименовать текущий файл и снова произвести запись. Если повторная запись оказывается удачной, то продолжается работа в обычном режиме, а выход **bad** инкрементируется. Необходимо принять меры по диагностике или замене носителя, поскольку сбои при записи могут быть следствием скорого выхода его из строя.

Файл, на котором произошел сбой, остается на диске под тем же именем с добавленным к нему суффиксом, равным метке времени сбоя (в мс от 1 января 1970 г). Удалять его не следует, чтобы повторно не использовать потенциально сбойный сектор. Если происходит повторный сбой записи, то блок блокируется (выход **enb** = 0) и больше не производит попыток переименований файлов и записи до тех пор, пока ошибки не будут сброшены фронтом на входе **rst**.

ВНИМАНИЕ

При изменении числа входов блока **BufSupFitEx** файлы на диске перезаписываются.

		b32			10		
		BufSu	oFitEx				
???	-	Inter	itr	bsup	pkt	⊢	
0x100	-	group	int	s40	next	⊢	следующий файл
	-	fnm	str	int	enb	⊢	запись разрешена
0xff	-	mask	uns	int	sts	⊢	0 - после сброса, 1 - записан, 2 - прочитан
сбросошибокзаписи 0	-	rst	b	uns	good	⊢	удачных записей
запись на диск О	-	wr	b	uns	bad	⊢	ошибок записи
				uns	rej	⊢	отклон енных запи сей
0	-	dan0	flt	flt	dan0	⊢	
0	-	czap0	b	b	chn0	⊢	
AI	-	typ0	enm	b	zap0	⊢	
0	-	adr0	uns				
0	-	ini0	flt				
0	-	min0	flt				
100	-	max0	flt				

Рисунок 3.19 – Буфер чтения/записи уставок с плавающей точкой (BufSupFltEx)

3.6 Диагностика и управление обменом

Практически у каждого блока, который используют для обмена по протоколу Modbus, есть выход статуса работы для диагностики обмена.

Блок	Имя перемен- ной	Значение	Описание
	٩	Рункциональні	ые блоки настройки СОМ-портов
Порт RS-485	stat	<0	Ошибка
		1	Корректная работа
Порт RS-232	stat	<0	Ошибка
		1	Корректная работа
			Modbus RTU
Modbus RTU	sts	0	Корректная работа
Master		1	Slave не отвечает
		2	Неверная контрольная сумма
Modbus RTU Slave	sts	-	Не используется

Таблица 3.22 – Статусы блоков обмена по протоколу Modbus RTU

Таблица 3.23 – Статусы блоков обмена по протоколу Modbus TCP

Блок	Имя перемен- ной	Значение	Описание
	Фуі	нкциональные	блоки настройки ТСР-соединений
TcpIpSrA	stat	0	Есть подключения
		>0	Нет подключений
TcpIpCIA	stat	0	Есть связь с TCP/IP-сервером
		>0	Нет связи с ТСР/ІР-сервером
			Modbus TCP
Modbus TCP	sts	0	Есть связь с TCP/IP-сервером
Master		>0	Нет связи или Slave не отвечает
Modbus TCP sts 0 Есть связь с Master		Есть связь с Master	
Slave		>0	Нет связи или нет запросов от Master

Таблица 3.24 – Статусы блоков чтения/записи при подключении к Modbus RTU/TCP Master

Блок	Имя перемен- ной	Значение	Описание
	-		Команды чтения
ModbusCoilln	st	0	Нет связи
		1	Есть связь, нет ошибок
		>1	Есть связь, код ошибки в старшем байте
ModbusDInputIn	st	0	Нет связи
		1	Есть связь, нет ошибок
		>1	Есть связь, код ошибки в старшем байте
ModbusRegIn	st	0	Нет связи
		1	Есть связь, нет ошибок
		>1	Есть связь, код ошибки в старшем байте
ModbusAInputIn	st	0	Нет связи
		1	Есть связь, нет ошибок

Продолжение таблицы 3.24

Блок	Имя перемен- ной	Значение	Описание
		>1	Есть связь, код ошибки в старшем байте
ModbusFltIn	st	0	Нет связи
		1	Есть связь, нет ошибок
		>1	Есть связь, код ошибки в старшем байте
OwenFltIn	st	0	Нет связи
		1	Есть связь, нет ошибок
		>1	Есть связь, код ошибки в старшем байте
			Команды записи
ModbusCoilOut	st	0	Нет связи
		1	Есть связь, нет ошибок
		>1	Есть связь, код ошибки в старшем байте
ModbusRegOut	st	0	Нет связи
		1	Есть связь, нет ошибок
		>1	Есть связь, код ошибки в старшем байте
ModbusCoilsOut	st	0	Нет связи
		1	Есть связь, нет ошибок
		>1	Есть связь, код ошибки в старшем байте
ModbusRegsOut	st	0	Нет связи
		1	Есть связь, нет ошибок
		>1	Есть связь, код ошибки в старшем байте
ModbusFltOut	st	0	Нет связи
		1	Есть связь, нет ошибок
		>1	Есть связь, код ошибки в старшем байте

Блоки *Modbus RTU Slave*, *Modbus TCP Slave*, *Modbus RTU Master* и *Modbus TCP Master* имеют вход enbl для разрешения работы блока. Если задать на входе значение:

- 1, то блок реализует протокол обмена;
- 0 блок не работает, в выходе статуса sts устанавливается 0.

Блоки чтения/записи имеют входы **enb** для разрешения работы блоков. Вход **enb** не используется при подключении к блокам *Modbus RTU/TCP Slave*. Если задать на входе значение:

- 1, то блок читает/записывает регистры подключенного устройства;
- 0 блок не работает, в выходе статуса st при этом устанавливается 0.

4 Методика настройки обмена по протоколу Modbus

4.1 Общая методика конфигурирования интерфейсов

Настройка обмена по протоколу Modbus в Полигон состоит из следующих действий:

Рисунок 4.1 – Последовательность конфигурирования Modbus в Полигон

Сначала необходимо выбрать интерфейс для обмена – СОМ-порт или Ethernet. Для СОМ-порта нужно выбрать и настроить блок СОМ-порта. Для Ethernet нужно добавить и настроить TCP/IP-сервер или TCP/IP-клиент.

Затем необходимо выбрать режим работы интерфейса – Master или Slave, добавить соответствующий блок протокола и соединить с блоком СОМ-порта/TCP-соединения.

Если интерфейс работает в режиме Master, то следует добавить блоки команд для опроса подчиненных устройств, указать их адреса и адреса опрашиваемых/записываемых регистров.

Если интерфейс работает в режиме Slave, следует добавить блоки поддерживаемых команд и адреса выделяемых регистров.

4.2 Настройка ПЛК в режиме Modbus RTU Master

Для настройки ПЛК в режиме *Modbus RTU Master* следует выполнить следующие действия:

- 1. Создать новую *Программу* в проекте в месте работы *Фон* (блок Modbus RTU Master рекомендуется размещать в фоне). В свойствах созданной программы задать *Имя Modbus* (или любое другое).
- 2. Создать внутри программы *Страницу*. Добавить свойство *Комментарии* и задать *Modbus RTU Master* (или любой другой).

Рисунок 4.2 – Создание страницы для настройки опроса в режиме Modbus RTU Master

3. Создать на странице блок настройки COM-порта из библиотеки *paOwenIO*. Задать номер используемого COM-порта (для *210-RS485*), задать сетевые настройки интерфейса.

Рисунок 4.3 – Добавление блока настройки СОМ-порта

4. Создать на странице блок Modbus RTU Master из библиотеки *paModbus*. Задать настройки Masterустройства.

Рисунок 4.4 – Добавление блока Modbus RTU Master

5. Соединить выход блока СОМ-порта cnc с соответствующим входом блока Modbus RTU Master.

Рисунок 4.5 – Связь блока настройки COM-порта с Modbus RTU Master

6. Создать на странице блоки команд на чтение данных из Slave-устройств. Задать адреса Slaveустройств. Задать адреса опрашиваемых регистров.

Опрос Slave-устройства 1

		b131			45	
		Mod	busRe	gin		
???	-	itr	itr	bfi	bi	\vdash
1	-	enb	uch	int	st	⊢
Адрес устройства 16	-	slv	uch	uns	00	┝
50	-	adr0	uns	uns	o1	┝
				uns	o2	\vdash
				uns	03	\vdash
		b132			50	
		Mod	busCo	illn		
???	-	itr	itr	bfi	bi	⊢
1	-	enb	uch	int	st	┝
Адрес устройства 16	-	slv	uch	ь	00	┝
0	-	adr0	uns	b	o1	\vdash
				b	o2	F
				b	03	F
				b	04	F
				b	05	F
				b	06	F
				b	07	F

Опрос Slave-устройства 2

Рисунок 4.6 – Добавление и настройка блоков команд на чтение

7. Соединить выходы блока *Modbus RTU Master* itr с соответствующими входами блоков команд чтения регистров.

b130

cnc cnc

разрешение работы 1

таймаут (мс) 5000

период работы (мс) 100

enbl uns

wait ulg

MRTU_Master

tmp ulg

40

itr

sts

статус

itr

uns

100

adr0 uns

uns

uns

uns

o1 o2

03

Опрос Slave-устройства 1

Рисунок 4.7 – Связь блоков команд чтения с Modbus RTU Master

- 8. Если требуется, можно соединить выходы о блоков чтения с входами других блоков в проекте.
- 9. Создать блоки команд на запись данных в Slave-устройства. Задать адреса Slave-устройств. Задать адреса записываемых регистров.

Рисунок 4.8 – Добавление и настройка блоков команд на запись

10. Создать у блока *Modbus RTU Master* входы типа **bfo** количеством, соответствующим количеству добавленных команд на запись. Затем соединить выходы блоков записи с добавленными входами **bo** блока *Modbus RTU Master*.

- 11. Если требуется, можно соединить входы in блоков записи с выходами других блоков в проекте.
- 12. Задать порядок выполнения блоков По потоку данных.

Таким образом, получится следующий вид страницы Modbus RTU Master.

Рисунок 4.10 – Настройка Modbus RTU Master

Пример настройки ПЛК в режиме Modbus RTU Master для опроса модулей Mx110 приведен в разделе 6.1.

4.3 Настройка ПЛК в режиме Modbus RTU Slave

Для настройки ПЛК в режиме *Modbus RTU Slave* следует:

- 1. Создать новую **Программу** в проекте в месте работы **Фон** (блок Modbus RTU Slave рекомендуется размещать в фоне). В свойствах созданной программы задать **Имя** Modbus (или любое другое).
- 2. Создать внутри программы *Страницу*. Добавить свойство *Комментарии* и задать *Modbus RTU Slave* (или любой другой).

Рисунок 4.11 – Создание страницы для настройки опроса в режиме Modbus RTU Slave

3. Создать на странице блок настройки COM-порта из библиотеки *paOwenIO*. Задать номер используемого COM-порта (для *210-RS485*), задать сетевые настройки интерфейса.

Рисунок 4.12 – Добавление блока настройки СОМ-порта

4. Создать на странице блок Modbus RTU Slave из библиотеки *paModbus*. Задать настройки Slaveустройства.

Рисунок 4.13 – Добавление блока Modbus RTU Slave

5. Соединить выход блока СОМ-порта cnc с соответствующим входом блока Modbus RTU Slave.

Рисунок 4.14 – Связь блока настройки СОМ-порта с Modbus RTU Slave

- 6. Создать на странице блоки команд на <u>чтение/запись</u> данных Slave-устройства. Задать адрес Slaveустройства. Задать адреса выделяемых регистров. Если необходимо и записывать, и считывать один и тот же регистр, то необходимо соединить выход блока записи со сходом блока чтения.
- Соединить выходы блока Modbus RTU Slave itr с соответствующими входами блоков команд записи регистров.
- 8. Если требуется, можно соединить выходы о блоков записи с входами других блоков в проекте.
- Создать у блока Modbus RTU Slave входы типа bfo количеством, соответствующим количеству добавленных команд на чтение. Затем соединить выходы блоков чтения с добавленными входами bo блока Modbus RTU Slave.

- 10. При необходимости соединить входы in блоков чтения с выходами других блоков в проекте.
- 11. Задать порядок выполнения блоков По потоку данных.

Таким образом, получится следующий вид страницы Modbus RTU Slave:

Рисунок 4.15 – Настройка Modbus RTU Slave

Пример настройки ПЛК в режиме Modbus RTU Slave для опроса Owen OPC Server приведен в разделе 6.2.

4.4 Настройка ПЛК в режиме Modbus TCP Master

Для настройки ПЛК в режиме *Modbus TCP Master* следует:

- Создать новую Программу в проекте в месте работы Фон (блоки TcpIpCIA и Modbus TCP Master рекомендуется размещать в фоне). В свойствах созданной программы задать Имя – Modbus (или любое другое).
- 2. Создать внутри программы *Страницу*. Добавить свойство *Комментарии* и задать *Modbus TCP Master* (или любой другой).

Рисунок 4.16 – Создание страницы для настройки опроса в режиме Modbus TCP Master

 Создать на странице блок TCP/IP-клиента TcpIpCIA из библиотеки paCore. Задать локальные порт и IP адрес TCP-клиента и удаленные порт и адрес TCP-сервера.

При настройке блока *TcpIpCIA* удобно использовать некоторые свойства модуля. Для этого можно использовать технологию SQL-запросов. Это позволяет изменять IP адреса и порты в одном месте, и использовать эти значения в разных частях проекта.

Запрос IP адреса (prop_ip):

"<sql>SELECT value FROM blocks_prop WHERE indx=:module AND type="prop_ip"</sql>"

Запрос пользовательского свойства Пользовательское свойство 00 (prop_0):

<sql> SELECT value FROM blocks prop WHERE indx=:module AND type="prop 0"</sql>

Для каждого опрашиваемого прибора необходимо добавлять свой блок TCP/IP-клиента.

Рисунок 4.17 – Добавление блока ТСР/ІР-клиента

4. Создать на странице блок Modbus TCP Master из библиотеки *paModbus*. Задать настройки Masterустройства.

Рисунок 4.18 – Добавление блока Modbus TCP Master

5. Соединить выход блока *TcplpClA* cnc с соответствующим входом блока *Modbus TCP Master*.

6. Создать на странице блоки команд на чтение данных из Slave-устройства. Задать ID Slaveустройства. Задать адреса опрашиваемых регистров.

Рисунок 4.20 – Добавление и настройка блоков команд на чтение

7. Соединить выходы блока *Modbus TCP Master* itr с соответствующими входами блоков команд чтения регистров.

Рисунок 4.21 – Связь блоков команд чтения с Modbus TCP Master

8. Если требуется, можно соединить выходы о блоков чтения с входами других блоков в проекте.

9. Создать блоки команд на запись данных в Slave-устройства. Задать ID Slave-устройства. Задать адреса записываемых регистров.

Рисунок 4.22 – Добавление и настройка блоков команд на запись

 Создать у блока Modbus TCP Master входы типа bfo количеством, соответствующим количеству добавленных команд на запись. Затем соединить выходы блоков записи с добавленными входами bo блока Modbus TCP Master.

11. При необходимости соединить входы in блоков записи с выходами других блоков в проекте.

12. Задать порядок выполнения блоков По потоку данных.

Таким образом, получится следующий вид страницы Modbus TCP Master:

Рисунок 4.24 – Настройка Modbus TCP Master

Пример настройки ПЛК в режиме Modbus TCP Master для опроса модулей Mx210 приведен в разделе 6.3.

4.5 Настройка ПЛК в режиме Modbus TCP Slave

Для настройки ПЛК в режиме *Modbus TCP Slave* следует выполнить следующие действия:

- Создать новую Программу в проекте в месте работы Фон (блоки TcplpSrA и Modbus TCP Slave рекомендуется размещать в фоне). В свойствах созданной программы задать Имя – Modbus (или любое другое).
- 2. Создать внутри программы *Страницу*. Добавить свойство *Комментарии* и задать *Modbus TCP Slave* (или любой другой).

Рисунок 4.25 – Создание страницы для настройки опроса в режиме Modbus TCP Slave

 Создать на странице блок TCP/IP-сервера TcplpSrA из библиотеки *paCore*. Задать локальные порт и IP-адрес TCP-сервера.

К блоку ТСР-сервера можно подключить до 20 клиентов.

Рисунок 4.26 – Добавление блока ТСР/ІР-сервера

При настройке блока *TcplpSrA* удобно использовать некоторые свойства модуля. Для этого можно использовать технологию SQL-запросов. Это позволяет изменять IP адрес и порт в одном месте, и использовать эти значения в разных частях проекта.

Запрос IP адреса (prop_ip):
"<sql>SELECT value FROM blocks_prop WHERE indx=:module AND type="prop_ip"</sql>"

Запрос пользовательского свойства Пользовательское свойство 00 (prop_0):

<sql> SELECT value FROM blocks_prop WHERE indx=:module AND type="prop_0"</sql>

4. Создать на странице блок Modbus TCP Slave из библиотеки *paModbus*. Задать настройки Slaveустройства.

Рисунок 4.27 – Добавление блока Modbus TCP Slave

5. Соединить выход блока *TcplpSrA* cnc с соответствующим входом блока *Modbus TCP Slave*.

Рисунок 4.28 – Связь блока TCP/IP-сервера с Modbus TCP Slave

- 6. Создать на странице блоки команд на <u>чтение/запись</u> данных Slave-устройства. Задать Slave IDустройства. Задать адреса выделяемых регистров. Если необходимо и записывать, и считывать один и тот же регистр, то необходимо соединить выход блока записи с сходом блока чтения.
- 7. Соединить выходы блока *Modbus TCP Slave* itr с соответствующими входами блоков команд записи регистров.
- 8. Если требуется, можно соединить выходы о блоков записи с входами других блоков в проекте.
- Создать у блока Modbus TCP Slave входы типа bfo количеством, соответствующим количеству добавленных команд на чтение. Затем соединить выходы блоков чтения с добавленными входами bo блока Modbus TCP Slave.
- 10. Если требуется, можно соединить входы in блоков чтения с выходами других блоков в проекте.
- 11. Задать порядок выполнения блоков По потоку данных.

Таким образом, получится следующий вид страницы Modbus TCP Slave:

Рисунок 4.29 – Настройка Modbus TCP Slave

Пример настройки ПЛК в режиме Modbus TCP Slave для опроса Owen OPC Server приведен в разделе 6.4.

5 Запись уставок по протоколу Modbus

5.1 Запись целочисленных уставок по протоколу Modbus (BufSupEx)

Для записи уставок по протоколу Modbus используются блоки *BufSupEx* из библиотеки *paCore*.

Вход inter блока *BufSupEx* подключается к выходу блока протокола Modbus TCP Slave или Modbus RTU Slave.

Мастер в сети Modbus может читать и записывать данные на диск. Для чтения блок **BufSupEx** реализует функцию **0x03**, для записи – **0x06** и **0x10**.

Вход group определяет Slave ID устройства (ID = 1 соответствует значение входа 0x100).

Входы **dan** используются для записи уставок из программы контроллера. Для того, чтобы значение записалось на диск из программы, и его прочитал мастер сети Modbus, следует также подать импульс на соответствующий вход **czap**.

Входы **typ** определяют тип данных **dan**, при работе по Modbus могут принимать только значения **II**, **IO** (16-ти битный регистр), так как Modbus работает с целочисленными регистрами.

Про сохранение уставок с плавающей точкой по протоколу Modbus можно подробнее прочитать в разделе 5.2.

Входы adr определяют адреса выделяемых регистров Modbus.

Входы **min** и **max** задают минимальное и максимальное возможное значение **dan**. Если программа или мастер сети изменяет значение, то оно проверяется на условие соответствия этому диапазону.

Выходы dan отображают текущие значения уставок, сохраненные на диске.

Параметры на диске сохраняются в бинарных файлах с расширениями .da1 и .da2.

ВНИМАНИЕ

При изменении числа входов блока *BufSupEx* файлы на диске перезаписываются.

Подробнее о возможностях и работе блока *BufSupEx* в документе Архивирование и сохранение уставок.

Рисунок 5.1 – Подключение BufSupEx к Modbus TCP Slave

Рисунок 5.3 – Запись уставки из программы контроллера

5.2 Запись уставок с плавающей точкой по протоколу Modbus (BufSupFltEx)

Для записи уставок по протоколу Modbus используются блоки BufSupFitEx.

Вход inter блока *BufSupFitEx* подключается к выходу блока протокола Modbus TCP Slave или Modbus RTU Slave.

Мастер в сети Modbus может читать и записывать данные на диск. Для чтения блок **BufSupFitEx** реализует функцию **0x03**, для записи – **0x10**.

Вход group определяет Slave ID устройства (ID = 1 соответствует значение входа 0x100).

Входы **dan** используются для записи уставок из программы контроллера. Для того, чтобы значение записалось на диск из программы, и его прочитал мастер сети Modbus, следует также подать импульс на соответствующий вход **czap**.

Входы typ определяют тип данных dan, могут принимать только значения AI, AO (вещественное число).

Входы **adr** определяют адреса выделяемых регистров Modbus. Для опроса каждого значения **dan** выделяется два регистра Modbus.

Входы **min** и **max** задают минимальное и максимальное возможное значение **dan**. Если программа или мастер сети изменяет значение, то оно проверяется на условие соответствия этому диапазону.

Выходы dan отображают текущие значения уставок, сохраненные на диске.

Параметры на диске сохраняются в бинарных файлах с расширениями .da1 и .da2.

🛦 |ВНИМАНИЕ

При изменении числа входов блока **BufSupFitEx** файлы на диске перезаписываются.

Подробнее о работе блока BufSupFltEx в разделе 3.5.

Рисунок 5.4 – Подключение BufSupFltEx к Modbus TCP Slave

Рисунок 5.6 – Запись уставки из программы контроллера

6 Примеры настройки обмена по протоколу Modbus

6.1 ПЛК210 (Modbus RTU Master) и модули Mx110

В качестве примера будет рассмотрена настройка обмена с модулями Mx110 (МВ110-8А, МВ110-16Д и МУ110-8Р).

Реализуемый алгоритм: если значение первого аналогового входа модуля MB110-8A превышает 30 и при этом первый дискретный вход модуля MB110-16Д замкнут, то первый дискретный выход MУ110-8P замыкается с задержкой 3 секунды. Во всех остальных случаях дискретный выход MУ110-8P разомкнут.

Рисунок 6.1 – Структурная схема примера

Пример создан в среде Полигон и подразумевает запуск на ПЛК210 с прошивкой 3.х.

Если требуется запустить проект на другом устройстве, следует изменить свойства **ОС** и **Тип процессорной платы** в окне **Свойства** модуля *MB_RTU_master_Mx110* на необходимые.

Пример доступен для скачивания по ссылке. Пароль для доступа к отладчику – 1.

Таблица 6.1 – Сетевые параметры устройств в примере

Параметр	МВ110-16Д	MB110-8A	МУ110-8Р
СОМ-порт ПЛК, к которому подключен модуль		A1B1	
Адрес модуля	1	1 16	
Скорость обмена		9600	
Количество бит данных		8	
Контроль четности		Нет	
Количество стоп-бит			

Таблица 6.2 – Регистры модулей в примере

Модуль	Номер регистра DEC	Тип в устройстве	Функция Modbus	Описание
MB110-8A	4, 5	FLOAT 32	0x03	Значение температуры со входа 1
МВ110-16Д	51	UINT 16	0x03	Битовая маска входов
МУ110-8Р	50	UINT 16	0x10	Битовая маска выходов

Для настройки обмена следует:

1. Настроить модули **Mx110** с помощью программы **OBEH Конфигуратор/Конфигуратор M110** в соответствии с таблицей 6.1. Подключить модули к контроллеру в соответствии с рисунком 6.1.

- 2. Создать новый проект **Полигон** (в примере файл с именем *MB_RTU_master_Mx110*). Добавить в проект библиотеку *paModbus*.
- 3. Добавить в место работы **Фон** программу с именем Modbus_RTU_Master.
- 4. Внутри программы добавить четыре **Страницы**, в свойстве **Комментарии** которых указать соответственно СОМ-порт, МВ110-8А, МВ110-16Д и МУ110-8Р.

Рисунок 6.2 – Дерево проекта

5. Внутри страницы *COM-порт* создать блок 210-RS485 из библиотеки *paOwenIO*. На входах блока задать значения в соответствии с таблицей 6.1.

Рисунок 6.3 – Настройка блока СОМ-порт

6. Далее создать блок Modbus RTU Master. Соединить вход с соответствующим выходом блока **210**-*RS485*.

Рисунок 6.4 – Настройка блока Modbus RTU Master

7. Внутри страницы *MB110-8A* создать блок чтения значений с плавающей запятой ModbusFltIn. На входах блока задать значения в соответствии с таблицами 6.1 и 6.2.

Рисунок 6.5 – Настройка блока ModbusFitin

- 8. Внутри страницы *MB110-16Д* создать блок для чтения значений с дискретных входов *ModbusRegIn*. На входах блока задать значения таблицами 6.1 и 6.2.
- Создать блок выбора 16 битов из регистра FromReg16 из библиотеки paCore и соединить выход блока ModbusRegIn o0 с входом reg блока FromReg8. Добавить к первому выходу блока FromReg8 комментарий – Вход MB110-16Д.

Рисунок 6.6 – Страница МВ110-16Д

- 10. Поставить на странице порядки По потоку данных.
- 11. Внутри страницы *МУ110-8Р* создать блок для записи значений на дискретные выходы *ModbusRegsOut*. На входах блока задать значения в соответствии с таблицами 6.1 и 6.2.
- 12. Создать блок объединения 8 битов в регистр *ToReg8* из библиотеки *paCore* и соединить вход блока *ModbusRegsOut*in0 с входом **reg** блока *ToReg8*. Добавить к первому входу блока *ToReg8* комментарий *Выход МУ110-8P*.

Рисунок 6.7 – Страница МУ110-8Р

- 13. Поставить на странице порядки По потоку данных.
- Соединить выход блока ModbusRTU Master itr с соответствующими входами блоков чтения на страницах MB110-8A и MB110-16Д.
- 15. Создать вход у блока *Modbus RTU Master* bo0, соединить его с соответствующим выходом блока записи на странице *МУ110-8P*.
- 16. Создать в месте работы Таймер программу с названием Мх110.
- 17. Внутри программы создать страницы с комментариями Значения с модулей и Обработка значений.

Рисунок 6.8 – Дерево программы

18. На странице Значения с модулей создать блоки TransBit и TransFlt из библиотеки paCore.

19. Соединить входы блоков со страницы Значения с модулей с выходами блоков со страниц МВ110-8А и МВ110-16Д, как показано на рисунках ниже.

Рисунок 6.11 – Соединение блоков (МВ110-8А)

Рисунок 6.12 – Соединение блоков (МВ110-16Д)

20. Соединить выход блока со страницы Значения с модулей с входами блоков со страницы МУ110-8Р, как показано на рисунках ниже.

Рисунок 6.13 – Соединение блоков (Значения с модулей)

Рисунок 6.14 – Соединение блоков (МУ110-8А)

21. На странице *Обработка значений* создать блоки *Cmpr*, *AND* и *DelayOn* из библиотеки *paCore*. Соединить их и настроить в соответствии с рисунком ниже.

Рисунок 6.15 – Страница Обработка значений

22. Соединить входы блоков *Cmpr* и *AND* с выходами блоков со страницы Значения с модулей, как показано на рисунках ниже.

Рисунок 6.16 – Соединение блоков (Значения с модулей) с блоками Cmpr и AND

Рисунок 6.17 – Соединение блоков (Обработка значений)

23. Соединить выход блока **DelayOn** с входом блока со страницы Значения с модулей, как показано на рисунках ниже.

		MY110-8P	10	
		TransBit		
Таймер.Мх110.2. Задержка 30 с.q	——— Выход MУ110-8P ——	10 b	b o0	— Выход МУ110-8Р

Рисунок 6.18 – Соединение блока (Значения с модулей) с блоком DelayOn

Рисунок 6.19 – Соединение блока (Обработка значений)

Для наладки работы собранной системы в примере используется окно представления *График*. Для настройки графика необходимо сделать следующее.

24. Создать в модуле Раздел с именем График.

25. Добавить в раздел *График* выходы блоков *TransBit* и *TransFlt* – *Температура*, Вход МВ110-16Д и Выход МУ110-8Р. На странице Значения с модулей данные выходы должны подсветиться желтым.

Рисунок 6.21 – Блоки TransBit и TransFlt с подсвеченными выходами

26. Открыть окно представления *График* и перетащить созданный раздел в верхнее поле окна.

	Полный пу	/ть		▼	Значение онлай	ін 💌	Комментарии	-	Цвет	•	Маркер 1	▼	Маркер 2	-	График: мини	Граф
106	106 MB_RTU_master_Mx110.График.o0 Те			Температура												
108	MB_RTU_ma	aster_M	х110.График.	00			Вход МВ110-16Д	ι								
109	MB_RTU_ma	aster_M	х110.График.	00			Выход МУ110-8)								
•											1					F
1.0	00	1 000														
	1 1												· · · · · · · · · · · · · · · · · · ·			
8																
	1 1	1														
60	00 - 600 -	600 -														
	1 1	-														
4	00 - 400 -	400 -														_
	4 4	- 1														
20	00 - 200 -	200 -														
	1 1															
		. 1														
P					01:15:40.000 25.11.2023	0	01:15:50.000 25.11.2023	0)1:16:00.000 25.11.2023		01:16:10.000 25.11.2023	-	01:16:20.000 25.11.2023	-	01:16:30.000 25.11.2023	
Длит	ельность да	інных (с	ек): 180		Показыват	ь (сек):	60		Период отпр	равки (мс) 1000					
v 0)чищать дан	іные 🛛	Общая осы	γ 🗆	Маркеры 1:				2:							
Дела	ть отсчеты	🖲 в фо	оне Свта	ймере	О произволы	но: пе	риод (мс)	_	размер очер	реди 🛛	1					
	Bany	CTIATE	1		Экспорт		1			,						
_	Sany	стить			Skulopt											

Рисунок 6.22 – Окно представления график

27. Запустить проект на контроллере, запустить отладчик и открыть график. Корректная работа системы показана на рисунке ниже.

Рисунок 6.23 – Работа программы

6.2 ПЛК210 (Modbus RTU Slave) и Owen OPC Server

В качестве примера будет рассмотрена настройка обмена с Owen OPC Server, который будет использоваться в режиме Modbus RTU Master.

Рисунок 6.24 – Структурная схема примера

Пример создан в среде Полигон и подразумевает запуск на ПЛК210 с прошивкой 3.х.

Если требуется запустить проект на другом устройстве, следует изменить свойства **OC** и **Tun процессорной платы** в окне **Свойства** модуля *MB_RTU_slave_Owen_OPC_server* на необходимые.

Пример доступен для скачивания по ссылке. Пароль для доступа к отладчику – 1.

Таблица 6.3 – Сетевые параметры устройств в примере

Параметр	ПЛК210	Owen OPC Server
Режим работы	Slave	Master
СОМ-порт	A2B2	COM13

Продолжение таблицы 6.3

Параметр	ПЛК210	Owen OPC Server			
Slave ID	1	-			
Скорость обмена	115	200			
Количество бит данных	8				
Контроль четности	H	ет			
Количество стоп-бит		1			

Таблица 6.4 – Регистры/флаги ПЛК в примере

Адрес регистра/флага	Тип в устройстве	Область памяти		
0	WORD	Holding Registers		
0	BOOL	Coils		
1, 2	REAL	Holding Registers		

Для настройки обмена следует:

- 1. Подключить контроллер и ПК в соответствии с рисунком 6.24.
- 2. Создать новый проект **Полигон** (в примере с именем *MB_RTU_slave_Owen_OPC_server*). Добавить в проект библиотеку *paModbus*.
- 3. Добавить в место работы Фон программу с именем Modbus_RTU_Slave.
- 4. Внутри программы добавить две **Страницы**, в свойстве **Комментарии** которых указать соответственно Modbus RTU Slave и Регистры Modbus.

Рисунок 6.25 – Дерево проекта

5. Внутри страницы *Modbus RTU Slave* создать блок 210-RS485 из библиотеки *paOwenIO*. На входах блока задать значения в соответствии с таблицей 6.3.

Рисунок 6.26 – Настройка блока СОМ-порта

6. Далее создать блок Modbus RTU Slave. Соединить вход **спс** с соответствующим выходом блока **210-RS485**.

Рисунок 6.27 – Настройка блока Modbus RTU Slave

7. Затем создать блоки записи регистров в ПЛК (в соответствии с таблицей 6.4). Соединить входы блоков **itr** с советствующим выходом блока **Modbus RTU Slave**.

Рисунок 6.28 – Настройка блоков записи

8. Создать блоки чтения регистров из ПЛК (в соответствии с таблицей 6.4). Создать три входа **bo** у блока *Modbus RTU Slave*. Соединить их с соответствующими выходами блоков чтения.

Рисунок 6.29 – Настройка блоков чтения

 Для того, чтобы одновременно читать и записывать одни и те же значения мастером сети, следует соединить выходы блоков записи о со входами блоков чтения in. Для удобства в примере используются скрытые связи.

Для создания скрытой связи следует в свойствах выхода **о** добавить свойства **Полный алиас** и **Глобальная константа**. В свойстве **Полный алиас** задать имя новой константы.

Повторить те же действия для всех блоков записи на странице.

о0 (выход)		×		
Свойство 🛆	Значение	•		
Глобальная константа	v			
Номер	2			
Полный алиас	Coil			
Имя	00			
Имя типа	b			
Милакс	20	-		
Сохранить Отме	на			
Добавление новых свой	іств:			
Полный алиас 🗾 Добавит				
Глобальная константа	Добавить			
🔲 привязать к родител	ю			

Рисунок 6.30 – Создание скрытой связи

			Coil (0x05		30		
			Mod	ModbusCoilln				
		_	itr	itr	bfi	bi	-	
	1	-	enb	uch	int	st	-	
Адрес устройства	1	-	slv	uch	b	00	-	Coil
	0	-	adr0	uns				

Рисунок 6.31 – Блок записи с константным выходом

10. У соответствующих входов блоков чтения **in** правой кнопкой мыши задать созданные глобальные константы.

Рисунок 6.32 – Создание скрытой связи

11. Поставить на странице порядки По потоку данных.

Таким образом, вид страницы Modbus RTU Slave примет вид как на рисунке ниже.

Рисунок 6.33 – Вид страницы Modbus RTU Slave

12. Для удобства можно вынести значения созданных регистров ПЛК на отдельную страницу *Регистры Modbus*.

Для этого следует на странице *Регистры Modbus* создать блоки *TransBit*, *TransInt* и *TransFlt* из библиотеки *paCore*.

На входы созданных блоков I задать созданные ранее константы. Выходы блоков о при необходимости соединить с другими блоками в проекте.

Рисунок 6.34 – Терминальные блоки

- 13. Установить и запустить Owen OPC Server.
- 14. Нажать правой кнопкой мыши на компонент Сервер и добавить узел.

6 B ×	n a					
Файл	Проект					
Запустить опрос	Вставить	∲ Выреза П Копиро ДУдалит	іть овать ь	↑ ↓	Переместить і Переместить і	вверх вниз
🛛 🗄 Ce	рвор					1
	Дc	бавить	· * :	•	Добавить узел	
	🔓 Bo	тавить Ctrl+	V			

Рисунок 6.35 – Добавление узла

15. В свойствах добавленного узла задать протокол *Modbus RTU* и настройки интерфейса в соответствии с таблицей 6.3.

🔺 🗐 Сервер	Свойства Журнал			
-•)- Узел1	Имя	Значение		
	Общие настройки			
	Имя	Узел1		
	Комментарий			
	Включен в работу	Да		
	Протокол	Modbus-RTU 👻		
	Настройки интерфейса			
	Порт 🧷	COM13		
	Скорость 🧷	115200 👻		
	Данные	8		
	Четность	None 🗸		
	Стоп биты	1 ~		

Рисунок 6.36 – Свойства узла

16. Добавить в узел Устройство.

Рисунок 6.37 – Добавление устройства

17. Задать в устройстве свойства в соответствии с таблицей 6.3.

🖌 🗐 Сервер	Сво	йст	гва Журнал			
⊿ -Э- Узел1	Им	я		Значение		
🗓 плк210		Об	щие настройки			
			Имя 🧷	ПЛК210		
			Комментарий			
			Включен в работу	Дa		\sim
			Адрес	1		
			Время ожидания ответа (ms)	1000		
			Повторы при ошибке	3		
			Пауза между запросами (ms)	0		
			Период опроса	1	с	~
			Начальная фаза	0	мс	~
		Ha	стройки группового опроса			
			Количество HOLDING регистров	125		
			Количество INPUT регистров в з	125		
			Макс. допустимый разрыв адрес	0		
			Читать каждый тег отдельно	Нет		~
			Использовать команду запись е,	Нет		\sim

Рисунок 6.38 – Свойства устройства

18. Добавить в устройстве три *Тега*.

.4	🗄 Сервер					
	🔺 🕩 Узел1					
	🛽 плка	-	Лобавить	,	0	Tor
		ፍ	Сохранить устрой	₹ Q	Группа тегов	
		÷	Вырезать	Ctrl+X		
		D	Копировать	Ctrl+C		
		Ĝ	Вставить	Ctrl+V		
		×1	Удалить			
		1	Переместить ввер	х		
		J.	Переместить вни:	3		

Рисунок 6.39 – Добавление тега

19. Задать созданным тегам свойства в соответствии с таблицей 6.4.

🖌 🗐 Сервер	Свойства Теги Журнал	
🖌 🕩 Узел1	Имя Значение	
🔺 🎚 ПЛК210	и Общие настройки	
💊 Coil	Имя 🧷 Coil	
💊 Word	Комментарий	
💊 Real	Включен в работу Да	~
	Тип доступа Чтение/Запись	~
	Разовое чтение Нет	~
	Тип данных 🖉 Boolean	
	Индивидуальные настройки команд Да	~
	Настройки адресации	
	Регион 🧷 Coils	~
	Функция чтения 0х01	~
	Функция записи 🖉 0х05	~
	Адрес 0	
	Дополнительные параметры	

Рисунок 6.40 – Тег Coil

в Сервер	Свойст	а Теги	Журнал				
⊿ -Э- Узел1	Имя					Значение	
▲ 🛄 TI/IK210	▲ 06⊔	ие настр	рйки				
💊 Coil	L	мя			0	Word	
🛇 Word	k	омментар	рий				
💊 Real	E	Включен в работу		Да	\sim		
	1	Тип доступа		Чтение/Запись	\sim		
	F	Разовое чтение			Нет	\sim	
	1	Тип данных			Word	\sim	
	L	ндивидуа	льные нас	тройки команд		Да	\sim
	⊿ Hac	ройки ад	ресации				
	F	егион				Holding Registers	\sim
	C	ункция ч	тения			0x03	\sim
	c	ункция за	аписи		Ø	0x06	~
	A	дрес				0	
	Ν	іладшим	байтом вп	еред		Нет	\sim
	Дополнительные параметры						

Рисунок 6.41 – Тег Word

🔺 🗐 Сервер	Свойства Теги Журнал						
⊿ -Э- У зел1	Имя		Значение				
и Плк210	⊿ Общ	ие настройки					
S Coil	И	мя 🧷	Real				
S Word	к	омментарий					
📎 Real	В	ключен в работу	Да	~			
	Т	ип доступа	Чтение/Запись	~			
	P	азовое чтение	Нет	~			
	т	ип данных 🧷	Float	~			
	V	ндивидуальные настройки команд	Нет	~			
	⊿ Наст	ройки адресации					
	Ρ	егион	Holding Registers	~			
	¢	ункция чтения	0x03	~			
	¢	ункция записи	0x10	~			
	A	дрес 🖉	1				
	N	1ладшим байтом вперед	Нет	~			
	N	1ладшим регистром вперед	Нет	~			
	Доп	олнительные параметры					

Рисунок 6.42 – Тег Real

- 20. Загрузить и открыть программу в ПЛК, запустить отладчик. Запустить опрос Owen OPC Server.
- 21. Корректный обмен данными показан на рисунках ниже.

Рисунок 6.43 – Работа программы ПЛК

ŀ	Ter	и Устройства	3				
		Имя	Алрес	Значение	Тип данных	Качество	Комментарий
		ПЛК210.Coil	Coils [0]	True	Boolean	GOOD	
		ПЛК210.Word	Holding Registers [0]	25	Word	GOOD	
	►	ПЛК210.Real	Holding Registers [1]	45,8	Float	GOOD	

Рисунок 6.44 – Работа Owen OPC Server

6.3 ПЛК210 (Modbus TCP Master) и модули Mx210

В качестве примера будет рассмотрена настройка обмена с модулями Mx210 (MB210-101 и MK210-301).

Реализуемый алгоритм: если значение первого аналогового входа модуля MB210-101 превышает 30 градусов, то на первом выходе модуля MK210-301 включается ШИМ-генератор. В любом другом случае выход находится в режиме переключения логического сигнала.

Первый выход МК210-301 соединяют с первым входом для отслеживания поступающих сигналов.

Рисунок 6.45 – Структурная схема примера

Пример создан в среде Полигон и подразумевает запуск на ПЛК210 с прошивкой 3.х.

Если требуется запустить проект на другом устройстве, следует изменить свойства **ОС** и **Тип процессорной платы** в окне **Свойства** модуля *MB_TCP_master_Mx210* на необходимые.

Пример доступен для скачивания по ссылке. Пароль для доступа к отладчику – 1.

Таблица 6.5 – Сетевые параметры устройств в примере

Параметр	ПЛК210	MB210-101	MK210-301		
Режим работы	Master	Slave	Slave		
IP адрес	10.2.7.77	10.2.11.68	10.2.4.5		
Маска подсети					
IP адрес шлюза	10.2.1.1				
Порт	502				
Slave ID	-	1	1		

Таблица 6.6 – Регистры модулей в примере

Модуль	Номер регистра DEC	Тип в устройстве	Функция Modbus	Описание
MB210-101	40004002	FLOAT 32 и UINT 16	0x03	Значение входа 1 и время измерения входа 1
	40034005			Значение входа 2 и время измерения входа 2

Модуль	Номер регистра DEC	Тип в устройстве	Функция Modbus	Описание
	40054008			Значение входа 3 и время измерения входа 3
МК210-301	51	UINT 8	0x03	Битовая маска входов DI1…DI6
	272 308	UINT 16	0x06	Режим работы выхода DO1: 0 – переключение лог. сигнала; 1 – ШИМ Период ШИМ DO1: 100060000 (мс)
	340			Коэффициент заполнения ШИМ DO1: 01000 (0.1 %)
	470	UINT 8		Битовая маска установки состояния выходов DO1DO8

Продолжение таблицы 6.6

Для настройки обмена следует:

- Настроить модули Mx210 с помощью программы ОВЕН Конфигуратор в соответствии с таблицей 6.5 (см. руководство Mx210. Примеры настройки обмена). Подключить модули к контроллеру в соответствии с рисунком 6.5.
- 2. Создать новый проект **Полигон** (в примере с именем *MB_TCP_master_Mx210*). Добавить в проект библиотеку *paModbus*.
- 3. Добавить в место работы Фон программу с именем Modbus_TCP_Client.
- 4. Внутри программы добавить две *Страницы*, в свойстве *Комментарии* которых указать соответственно *MB210-101* и *MK210-301*.

Рисунок 6.46 – Дерево проекта

5. Внутри страницы *MB210-101* создать блок TcplpClA из библиотеки *paCore*. На входах блока задать значения в соответствии с таблицей 6.5.

В примере локальный IP-адрес контроллера взят по SQL-запросу – обращение к соответствующему свойству модуля *MB_TCP_master_Mx210*.

Запрос ІР-адреса:

"<sql>SELECT value FROM blocks_prop WHERE indx=:module AND type="prop_ip"</sql>"

Рисунок 6.47 – Настройка блока ТСР/ІР-клиента

6. Далее создать блок Modbus TCP Master. Соединить вход **спс** с соответствующим выходом блока *TcplpCIA*.

Рисунок 6.48 – Настройка блока Modbus TCP Master

7. Затем создать блок чтения результатов измерения с аналоговых входов OwenFltIn. Добавить к блоку два выхода. В комментариях к выходам **rsit** прописать, к каким входам MB210-101 они относятся. Соединить вход блока **itr** с соответствующим выходом блока **Modbus TCP Master**.

- 8. Поставить на странице порядки По потоку данных.
- 9. Повторить п. <u>5...</u>6 на странице *МК210-301*.

Рисунок 6.50 – Настройка блоков TCP/IP-клиента и Modbus TCP Master

 Создать блок для чтения значений с дискретных входов *ModbusRegIn*. Задать на входе slv значение 1, на входе adr0 – 51 (см. таблицу 6.6). Соединить вход блока itr с соответствующим выходом блока *Modbus TCP Master*.

Рисунок 6.51 – Настройка блока ModbusRegIn

 Создать блок выбора 8 битов из регистра *FromReg8* из библиотеки *paCore* и соединить выход блока *ModbusRegIn* о0 с входом reg блока *FromReg8*. Добавить к первому выходу блока *FromReg8* комментарий – *Bxo∂* 1.

Рисунок 6.52 – Настройка блока FromReg8

Аналогично п. 10 создать блоки записи *ModbusRegOut* регистров 470, 272, 308, 340 (см. таблицу 6.6). В качестве начальных значений периода и коэффициента заполнения ШИМ указать соответственно, 2000 и 500.

Рисунок 6.53 – Настройка блоков ModbusRegOut

13. Создать блок объединения 8 битов в регистр *ToReg8* из библиотеки *paCore* аналогично п. 11.

14. Поставить на странице порядки По потоку данных.

Итоговый вид страниц МВ210-101 и МК210-301 показан на рисунках ниже.

Рисунок 6.56 – Вид страницы МК210-101

Перейти к обработке значений входов/выходов.

- 15. Создать в месте работы *Таймер* программу с названием *Mx210*.
- 16. Внутри программы создать страницы с комментариями Значения с модулей и Обработка значения температуры.

🗄 🕞 Проект
🗄 🖁 MB_TCP_master_Mx210
🖃 🕖 Таймер
🕀 🔒 Timer
⊡ 🚔 Mx210
🕀 🗋 1 Значения с модулей
표 🗋 2 Обработка значения температуры
🖻 💭 Фон
🕀 🔒 Debug
🖻 🔒 Modbus_TCP_Client
🖽 🗋 1 MB210-101
🕀 🗋 2 МК210-301
🗄 🖃 Библиотеки

Рисунок 6.57 – Дерево программы

17. На странице Значения с модулей создать блоки **TransBit** и **TransFit** из библиотеки **раCore** с тремя входами.

Рисунок 6.58 – Блоки TransBit и TransFlt

18. Соединить входы блоков со страницы Значения с модулей с выходами блоков со страниц *MB210-*101 и *MK210-301*, как показано на рисунках ниже.

2.Битовая маска D1.b0	МК21 Тгалзё Выход 1 0 — 10 b Темп. > 30 0 — 11 b Вход 1 — 12 b	0-301 10 hit b 00 — Выход 1 — b 01 — Темп. > 30 — b 02 — Выход
Фон.Modbus_TCP_Client 1.Чтение Al.rslt0	МВ21 Тгаля Эн ачение со входа 1 — 10 flt	0-101 5 It fit о0 Температура
Фон.Modbus_TCP_Client.1.Чтение Al.rslt1	—— Значение со входа 2 — I1 flt	flt o1 — Значение со входа 2
Фон.Modbus_TCP_Client.1.Чтение Al.rslt2	—— Значение со входа 3 — 12 flt	flt o2 — Значение со входа 3

Рисунок 6.59 – Соединение блоков (Значения с модулей)

Рисунок 6.61 - Соединение блоков (МК210-301)

19. Соединить выходы блоков со страницы Значения с модулей с выходами блоков со страницы *MB210-101*, как показано на рисунках ниже.

Рисунок 6.62 – Соединение блоков (Значения с модулей)

Рисунок 6.63 – Соединение блоков (МК210-301)

20. На странице Обработка значения температуры создать блоки Cmpr из библиотеки paCore.

Рисунок 6.64 – Блок Стрг

21. Соединить вход и выход блока *Стрг* с выходом и входом блоков со страницы *Значения с модулей*, как показано на рисунках ниже.

Рисунок 6.65 – Соединение блоков (Значения с модуля МК210–301) с блоком Cmpr

Рисунок 6.66 – Соединение блоков (Значения с модуля MB210–101) с блоком Cmpr

Для наладки работы собранной системы в примере используется окно представления График.

22. Создать в модуле Раздел с именем График.

23. Добавить в раздел *График* выходы блоков *TransBit* и *TransFit* – Выход и *Температура*. На странице *Значения с модулей* данные выходы должны подсветиться желтым.

Рисунок 6.68 – Блоки TransBit и TransFlt с подсвеченными выходами

24. Открыть окно представления График и перетащить созданный раздел в верхнее поле окна.

	Полный путь	Значение онлайн 💌	Комментарии 💌	Цвет 💌	Маркер 1	Маркер 2	График: миниму	График: макси	Ποι
56	MB_TCP_master_Mx210.График.o0		Температура						0
125	MB_TCP_master_Mx210.График.o2		Выход						0
•					,				F
1	- 50 -								
0,8	40								
					- - -				
0,6	30 -								
0.4	20								
0,4									
0,2	10 - 10 -								
0									-
۱۹I	18:00:50.00 14.11.2023	0 18:01:00.000 14:11.2023) 18:01:10. 14.11.20	000 23	18:01:20.000 14.11.2023	18:01:30.00 14.11.2023	0 18:0 14.1	1:40.000 1.2023	
Ллит	ельность данных (сек): 300	Показывать (се			отправки (мс) 100	0			
Дела	ть отсчеты 🖲 в фоне 🔿 в тайм	ере О произвольно:	период (мс) 0	размер	очереди 1				
	Запустить	Экспорт							
_									

Рисунок 6.69 – Окно представления график

25. Запустить проект на контроллере, запустить отладчик и открыть график. Пронаблюдать корректную работу системы.

Рисунок 6.70 – Работа программы

6.4 ПЛК210 (Modbus TCP Slave) и Owen OPC Server

В качестве примера будет рассмотрена настройка обмена с Owen OPC Server, который будет использоваться в режиме Modbus TCP Master.

Рисунок 6.71 – Структурная схема примера

Пример создан в среде Полигон и подразумевает запуск на ПЛК210 с прошивкой 3.х.

Если требуется запустить проект на другом устройстве, следует изменить свойства **ОС** и **Тип процессорной платы** в окне **Свойства** модуля *MB_TCP_slave_Owen_OPC_server* на необходимые.

Пример доступен для скачивания по ссылке. Пароль для доступа к отладчику – 1.

Таблица 6.7 – Сетевые параметры устройств в примере

Параметр	ПЛК210	Owen OPC Server		
Режим работы	Slave	Master		
IP адрес	10.2.7.77	10.2.3.179		
Порт	502			
Slave ID	1	-		

Таблица 6.8 – Регистры/флаги ПЛК в примере

Адрес регистра/флага	Тип в устройстве	Область памяти
0	WORD	Holding Registers
0	BOOL	Coils
1, 2	REAL	Holding Registers

Для настройки обмена следует:

- 1. Подключить контроллер и ПК к общей локальной сети (сетевые настройки ПЛК и ПК в примере см. таблицу 6.7).
- 2. Создать новый проект **Полигон** (в примере с именем *MB_TCP_slave_Owen_OPC_server*). Добавить в проект библиотеку *paModbus*.
- 3. Добавить в место работы *Фон* программу с именем *Modbus_TCP_Server*.
- 4. Внутри программы добавить две **Страницы**, в свойстве **Комментарии** которых указать соответственно Modbus TCP Server и Peeucmpы Modbus.

5. Внутри страницы *Modbus TCP Server* создать блок TcplpSrA из библиотеки **paCore**. На входах блока задать значения в соответствии с таблицей 6.7.

В примере локальный IP-адрес контроллера взят по SQL-запросу – обращение к соответствующему свойству модуля *MB_TCP_slave_Owen_OPC_server*.

Запрос ІР-адреса:

"<sql>SELECT value FROM blocks prop WHERE indx=:module AND type="prop ip"</sql>"

Рисунок 6.73 – Настройка блока ТСР/ІР-сервера

6. Далее создать блок Modbus TCP Slave. Соединить вход **спс** с соответствующим выходом блока *TcplpSrA*.

Рисунок 6.74 – Настройка блока Modbus TCP Slave

7. Затем создать блоки записи регистров в ПЛК (в соответствии с таблицей 6.8). Соединить входы блоков **itr** с сооветствующим выходом блока **Modbus TCP Slave**.

Рисунок 6.75 – Настройка блоков записи

8. Создать блоки чтения регистров из ПЛК (в соответствии с таблицей 6.8). Создать три входа **bo** у блока *Modbus TCP Slave*. Соединить их с соответствующими выходами блоков чтения.

Рисунок 6.76 – Настройка блоков чтения

9. Для того, чтобы одновременно читать и записывать одни и те же значения мастером сети, следует соединить выходы блоков записи о со входами блоков чтения **in**.

Для создания скрытой связи следует в свойствах выхода **о** добавить свойства **Полный алиас** и **Глобальная константа**. В свойстве **Полный алиас** задать имя новой константы. Эти действия следует повторить для всех блоков записи на странице.

о0 (выход)		x		
Свойство 🛆	Значение	_		
Глобальная константа	v			
Номер	2			
Полный алиас	Coil			
Имя	00			
Имя типа	b			
Musere	25	•		
Сохранить Отмена				
Добавление новых свойств:				
Полный алиас	•	Добавить		
Глобальная константа	-	Добавить		
привязать к родителю				

Рисунок 6.77 – Создание скрытой связи

Рисунок 6.78 – Блок записи с константным выходом

10. У соответствующих входов блоков чтения **in** правой кнопкой мыши задать созданные глобальные константы.

Рисунок 6.79 – Создание скрытой связи

11. Поставить на странице порядки *По потоку данных*.

Итоговый вид страницы Modbus TCP Server показан на рисунке ниже.

Рисунок 6.80 – Вид страницы Modbus TCP Server

12. Для удобства можно вынести значения созданных регистров ПЛК на отдельную страницу *Регистры Modbus*.

Для этого на странице *Регистры Modbus* следует создать блоки *TransBit*, *TransInt* и *TransFit* из библиотеки *paCore*.

На входы созданных блоков I задать созданные ранее константы. Выходы блоков о при необходимости соединить с другими блоками в проекте.

Рисунок 6.81 – Терминальные блоки

- 13. Установить и запустить Owen OPC Server.
- 14. Нажать правой кнопкой мыши на компонент Сервер и добавить узел.

6 6 *		
Файл	Проект	
Запустить опрос	Вставить Вставить Вставить № Вырезать С Переместить вниз Д Удалить	
E Ce	DBC	
	Добавить • 🔊 Добавить узел Савить Ctrl+V	

Рисунок 6.82 – Добавление узла

15. В свойствах добавленного узла задать протокол Modbus TCP/IP.

🖌 🗐 Сервер	Свойства Журнал	
-Э- Узел1	Имя	Значение
	И Общие настройки	
	Имя	Узел1
	Комментарий	
	Включен в работу	Да
	Протокол 🧷	Modbus TCP/IP

Рисунок 6.83 – Свойства узла

16. Добавить в узел Устройство.

🔺 🗐 Сервер						
🕩 Узел	1			_		
		Добавить		Þ	1	Устройство
	to	Вырезать	Ctrl+X		Ð	Устройство из библиотеки 🔸
	D	Копировать	Ctrl+C		Ţ	Устройство из файла
	Ĝ	Вставить	Ctrl+V			
	×.	Удалить				
	1	Переместит	гь вверх			
	J	Перемести	гь вниз			

Рисунок 6.84 – Добавление устройства

17. Задать в устройстве свойства в соответствии с таблицей 6.7.

▲ 目 Сервер	Свойс	тва Журнал			
₄ -Э- Узел1	Имя		Значение		
ПЛК210	⊿ 0б	щие настройки			
		Имя 🧷	ПЛК210		
		Комментарий			
		Включен в работу	Да		\sim
		IP адрес 🖉	10.2.7.77		
		Порт	502		
		Адрес	1		
		Время ожидания ответа (ms)	1000		
		Повторы при ошибке	3		
		Пауза между запросами (ms)	0		
		Период опроса	1	с	~
		Начальная фаза	0	мс	\sim

Рисунок 6.85 – Свойства устройства

18. Добавить в устройстве три *Тега*.

 ✓ → Узел1 ПЛК2 Добавить Сохранить устройство в библиотеку Вырезать Сtrl+X 	
ПЛК2 Добавить Асбавить Сохранить устройство в библиотеку Вырезать Стин-Х	
Сохранить устройство в библиотеку Вырезать Стин-Х	7
A Bunesath Ctrl+X	
0. polycono curv	
🔽 Копировать Ctrl+C	
Ставить Ctrl+V	
Удалить	
↑ Переместить вверх	
👃 Переместить вниз	

Рисунок 6.86 – Добавление тега

19. Задать созданным тегам свойства в соответствии с таблицей 6.8.

🖌 🗐 Сервер	Свойства	Теги	Журнал				
⊿ -Э- Узел1	Имя					Значение	
🔺 🗓 ПЛК210	И Общие настройки						
🛇 Coil	Имэ	Имя 🧷				Coil	
S Word	Kon	Комментарий					
💊 Real	Вкл	очен в р	аботу			Да	~
	Тип	доступа				Чтение/Запись	\sim
	Раз	Разовое чтение		Нет	\sim		
	Тип	данных			0	Boolean	
	Инд	ивидуал	ьные наст	гройки команд		Да	\sim
	⊿ Настро	йки адр	есации				
	Peri	юн			Ø	Coils	~
	Фун	кция чте	ния			0x01	\sim
	Фун	кция зап	иси		0	0x05	~
	Адр	ec				0	
	Допол	нительны	ые парам	етры			

Рисунок 6.87 – Тег Coil

🔺 🗐 Сервер	Свойства Теги Журнал	
⊿ -Э- Узел1	MMg	Зириение
и Плк210	 Общие настройки 	Shakenine
S Coil	Имя	Word
S Word	Комментарий	
S Real	Включен в работу	Да
	Тип доступа	Чтение/Запись
	Разовое чтение	Het
	Тип данных	Word
	Индивидуальные настройки команд	Да
	Настройки адресации	
	Регион	Holding Registers
	0x03	
	Функция записи 🖉	0x06
	Адрес	0
Младшим байтом вперед		Нет
	Дополнительные параметры	
4 目 Сервер	Рисунок 6.88 – Тег Word Свойства Теги Журнал	
▲ -Э- Узел1	Mug	20200000
▲ □ плк210	имя	значение
S Coil	Имя	Real
S Word	Комментарий	
S Real	Включен в работу	Да
	Тип доступа	Чтение/Запись 🗸
	Разовое чтение	Нет 🗸
	Тип данных 🖉	Float 🗸
	Индивидуальные настройки команд	Нет
	 Настройки адресации 	
	Регион	Holding Registers
	Функция чтения	0x03

Рисунок 6.89 – Тег Real

1

Нет

Нет

~

~

20. Загрузить и открыть программу в ПЛК, запустить отладчик. Запустить опрос Owen OPC Server.

Младшим байтом вперед

Дополнительные параметры

Младшим регистром вперед

Адрес

21. Корректный обмен данными показан на рисунках ниже.

Рисунок 6.90 – Работа программы ПЛК

L L						
~	1мя	Адрес	Значение	Тип данных	Качество	Комментарий
Π	1ЛК210.Coil	Coils [0]	True	Boolean	GOOD	
П	1ЛК210.Word	Holding Registers [0]	25	Word	GOOD	
÷п	1ЛК210.Real	Holding Registers [1]	45,8	Float	GOOD	

Рисунок 6.91 – Работа Owen OPC Server

Приложение А. Коды ошибок Modbus (Modbus Exception Codes)

Код	Имя	Описание
1 (0x01)	ILLEGAL FUNCTION	Код функции в запросе не поддерживается сервером
2 (0x02)	ILLEGAL DATA ADDRESS	Адрес параметра в запросе не поддерживается сервером
3 (0x03)	ILLEGAL DATA VALUE	Недопустимое значение данных для сервера
4 (0x04)	SERVER DEVICE FAILURE	Сбой устройства сервера
5 (0x05)	ACKNOWLEDGE	Сервер принял запрос, но ему требуется много времени для его обработки (предотвращение ошибки тайм-аута)
6 (0x06)	SERVER DEVICE BUSY	Сервер занят обработкой другого запроса. Клиент должен повторить запрос позже, когда сервер освободится
08 (0x08)	MEMORY PARITY ERROR	Произошла ошибка во время использования функции Modbus 20 или 21
10 (0x0A)	GATEWAY PATH UNAVAILABLE	Шлюз перегружен или неправильно настроен – невозможно построить маршрут к серверу
11 (0x0B)	GATEWAY TARGET DEVICE FAILED TO RESPOND	Нет ответа от сервера или он не в сети

Таблица А.1 – Коды ошибок Modbus (Modbus Exception Codes)

Россия, 111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5 тел.: +7 (495) 641-11-56, факс: (495) 728-41-45 тех. поддержка 24/7: 8-800-775-63-83, support@owen.ru отдел продаж: sales@owen.ru Веб-сайт ООО "ПромАвтоматика-Софт": www.pa.ru per.:1-RU-134025-1.2